期刊文献+

基于改进灰狼算法的配电网储能优化配置研究

Research on optimal allocation of energy storage in distribution network based on improved gray wolf algorithm
下载PDF
导出
摘要 为实现碳达峰、碳中和目标,需大幅度提高可再生能源的消纳能力,但光伏、风能等可再生能源随机性较强,提高了电力系统稳定运行的难度系数,因此,合理配置配电网储能是保证其能实现可持续发展的方式之一。基于此,文章通过分析网损改善费用和储能全寿命周期成本,形成完整的综合成本模型,在该模型基础上利用电压偏移指标,构建健全的配电网储能优化配置模型。同时,利用改进灰狼算法进行计算,提高其实际空间探索能力和配置方案的合理性。最后,经过IEEE33节点配网模拟仿真,该模型和改进灰狼算法能合理控制网络损耗,增加电网电压的稳定性,在计算速度方面有较大优势。 In order to achieve the goal of carbon peak and carbon neutrality,it is necessary to greatly improve the absorption capacity of renewable energy,but the randomness of renewable energy such as photovoltaic and wind energy is strong,which increases the difficulty coefficient of stable operation of the power system,so reasonable allocation of energy storage in the distribution network is one of the ways to ensure its sustainable development.Based on this,this paper analyzes the network loss improvement cost and the life cycle cost of energy storage to form a complete comprehensive cost model,and uses the voltage offset index to construct a sound optimal configuration model of energy storage in distribution network.At the same time,the improved gray wolf algorithm is used to calculate and improve its actual space exploration ability and rationality of the configuration scheme.Finally,after IEEE33 node distribution network simulation simulation,the model and the improved gray wolf algorithm can reasonably control the network loss,increase the stability of the grid voltage,and have great advantages in calculation speed.
作者 朱佳明 全飞 冯敏 ZHU Jiaming;QUAN Fei;FENG Min(State Grid Zhejiang Electric Power Co.,Ltd.Hangzhou Qiantang District Power Supply Company,Hangzhou 311225,China;Tiandi Electric Research(Beijing)Technology Co.,Ltd.Hangzhou Branch,Hangzhou310013,China)
出处 《中国高新科技》 2024年第3期71-72,106,共3页
关键词 改进灰狼算法 网损改善 电压改善 储能多目标配置模型 improve the gray wolf algorithm network damage improvement voltage improvement multi-objective configuration model for energy storage
  • 相关文献

参考文献4

二级参考文献60

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部