期刊文献+

基于注意力模块化神经网络的城市固废焚烧过程氮氧化物排放预测 被引量:1

Prediction of NOx emissions for municipal solid waste incineration processes using attention modular neural network
下载PDF
导出
摘要 氮氧化物(nitrogen oxides,NO_(x))浓度的实时精准检测是实现脱硝过程闭环控制的前提,对提高城市固废焚烧(municipal solid waste incineration,MSWI)过程脱硝效率具有重要意义。为此,提出了一种基于注意力模块化神经网络(attention modular neural network,AMNN)的MSWI过程NO_(x)排放预测方法。首先,模拟脑网络“分而治之”处理复杂任务的特性,利用模糊C均值(fuzzy C-means,FCM)聚类算法将待预测任务划分为多个子任务,从而降低预测任务复杂度;其次,针对各子任务,设计一种自组织模糊神经网络(self-organizing fuzzy neural network,SOFNN)构建子模型,通过神经元增删机制和二阶学习算法提高子模型的学习效率和学习精度;然后,提出了一种基于注意力机制的子模型整合策略,进一步提高预测模型的泛化性能;最后,通过基准实验Mackey-Glass时间序列预测和北京某MSWI厂实际数据验证了AMNN的可行性和有效性。 Real-time and accurate measurement of NO_(x)emissions is indispensable to achieve closed-loop control of the denitrification process during municipal solid waste incineration(MSWI).To this end,this paper proposes a NO_(x)emission prediction method for the MSWI process based on attention modular neural network(AMNN).First,it simulates the“divide and conquer”characteristics of the brain network in processing complex tasks,and uses the fuzzy C-means(FCM)clustering algorithm to divide the task to be predicted into multiple subtasks,thereby reducing the complexity of the prediction task.Second,to handle the sub-tasks efficiently,a self-organizing fuzzy neural network(SOFNN)is designed to construct the sub-models,in which a growing and pruning algorithm and an improved second-order learning algorithm work together to ensure both the learning efficiency and accuracy.Then,the attention mechanism is utilized to integrate the sub-models during the testing or application stages,which can further improve the generalization performance of this AMNN-based prediction model.Finally,the proposed prediction method is verified by Mackey-Glass time series and the real data from a MSWI plant in Beijing.
作者 蒙西 王岩 孙子健 乔俊飞 MENG Xi;WANG Yan;SUN Zijian;QIAO Junfei(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Beijing Laboratory of Smart Environmental Protection,Beijing 100124,China;Engineering Research Center of Intelligence Perception and Autonomous Control,Ministry of Education,Beijing 100124,China)
出处 《化工学报》 EI CSCD 北大核心 2024年第2期593-603,共11页 CIESC Journal
基金 国家重点研发计划项目(2019YFC1906004-2) 国家自然科学基金项目(622731013,61890930-5,62021003,62001012)。
关键词 城市固废焚烧 模块化神经网络 注意力机制 NOx排放预测 municipal solid waste incineration modular neural network attention mechanism NOx emissions prediction
  • 相关文献

参考文献10

二级参考文献123

  • 1李可夫,吴少华,李振中,王阳,董建勋,秦裕琨.以尿素为还原剂的SNCR过程的中试试验研究[J].中国电机工程学报,2006,26(z1):97-101. 被引量:17
  • 2王正帅,邓喀中.概率积分法参数辨识的多尺度核偏最小二乘回归方法[J].岩石力学与工程学报,2011,30(S2):3863-3870. 被引量:12
  • 3王春林,周昊,李国能,凌忠钱,岑可法.基于遗传算法和支持向量机的低NO_x燃烧优化[J].中国电机工程学报,2007,27(11):40-44. 被引量:67
  • 4张平,苑明哲,王宏.基于国际评价基准的溶解氧控制方法研究[J].信息与控制,2007,36(2):199-203. 被引量:13
  • 5Richard K Lyon. Method for the reduction of theconcentration of NO in combustion effluents using ammonia[P]. US, 3900554. 1975.
  • 6Hou Xiangsong (侯祥松). Experimental study on NO andNO removal in CFB boiler [ D ]. Beijing; TsinghuaUniversity, 2007.
  • 7Oliva M,Alzueta M U, Millera A,Bilbao R. Theoreticalstudy of the influence of mixing in the SNCR process.Comparison with pilot scale data [ J ]. ChemicalEngineering Science , 2000,55 (22) ; 5321-5332.
  • 8Lee Gang-Woo,Shon Byung-Hyun, Jung Jong-Hyeon, ChoiWon-Joon,Oh Kwang-Joon. Effect of mixing on NOremoval in the selective noncatalytic reduction reactionprocess [J]. Journal of Material Cycles and WasteManagement 2010 12 (3) : 204-211.
  • 9Brouwer J, Heap M P. A model for prediction of selectivenoncatalytic reduction of nitrogen oxides by ammonia, urea,and cyanuric acid with mixing limitations in the presence ofCO [ J ]. Symposium ( International ) on Combustion ,1996, 26 (2): 2117-2124.
  • 10Thanh D B Nguyen,Young-II Lim, Seong-Joon Kim, Won-Hyeon Eom, Kyung-Seun Yoon. Experiment andcomputational fluid dynamics (CFD) simulation of urea-based selective noncatalytic reduction (SNCR) in a pilot-scale flow reactor [J], Energy &- Fuels,2008, 22 C6):3864-3876.

共引文献246

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部