期刊文献+

无机纳米抗病毒材料及其抗病毒性检测技术的研究进展

Research progress of inorganic nano-antiviral materials and their antiviral detection technology
下载PDF
导出
摘要 病毒感染是人类面临严峻的健康挑战,COVID-19大流行的形势下增加了对抗病毒特性材料的需求,尤其是在公共场所。本文从病毒的形态、特征以及生命周期过程等探讨抗病毒材料的设计原则,综述了近年来几种研究广泛的金属与金属化合物、光响应型半导体、石墨烯、复合材料等无机纳米抗病毒材料,并对其抗病毒性能与抗病毒机制进行了总结与讨论,总结了无机纳米材料表面病毒活性的检测方法与相关制品的标准化研究现状,并展望了抗病毒材料的开发及其评价技术的发展方向。 Viral infection is a serious health challenge facing humanity,and the COVID-19 pandemic has increased the need for antiviral materials,especially in public places.This paper discusses the design principles of antiviral materials from the morphology,characteristics and life cycle process of viruses.Then,the work of several widely studied metals and metal compounds,light response type semiconductor,graphene,composite,etc.with antiviral functionality is reviewed,their microbial inactivation mechanisms as well as performance are summarized and discussed.The methods for detecting virus activity on materials and the standardization of related products are also reviewed.In the end,the future development of antiviral materials and its evaluation technology are prospected.
作者 刘蕊蕊 朱常才 冀志江 王静 赵春艳 解帅 LIU Ruirui;ZHU Changcai;JI Zhijiang;WANG Jing;ZHAO Chunyan;XIE Shuai(China Building Materials Academy,Beijing 100024,China;State Key Laboratory of Green Building Materials,Beijing 100024,China)
出处 《化学研究》 CAS 2024年第1期84-94,共11页 Chemical Research
基金 绿色建筑材料国家重点实验室自立项目(ZA-58)。
关键词 抗病毒材料 无机纳米材料 抗病毒机理 抗病毒性检测技术 抗病毒标准 antiviral materials inorganic nanomaterials antiviral mechanism antiviral detection tech-nology antiviral standard
  • 相关文献

参考文献2

二级参考文献15

  • 1Cumulative numbers of reported probable cases of SARS. http://www.who.int/csr/sars/country/2003_07_11/en (accessed August 20, 2003).
  • 2Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield Y. S, Khattra, J., Asano, J. K., Barber, S. A., Chan, S. Y., Cloutier, A., Coughlin, S. M., Freeman, D., Girn, N., Griffith, O. L., Leach, S. R., Mayo, M., McDonald, H., Montgomery, S. B., Pandoh, P. K., Petrescu, A. S., Robertson, A. G., Schein, J. E., Siddiqui, A., Smailus, D. E., Stott, J. M., Yang, G. S., Plummer, F., Andonov, A., Artsob, H., Bastien, N., Bernard, K., Booth, T. F., Bowness, D., Czub, M., Drebot, M., Fernando, L., Flick, R., Garbutt, M., Gray M., Grolla, A., Jones, S., Feldmann, H., Meyers, A., Kabani, A., Li, Y., Normand, S., Stroher, U., Tipples, G. A., Tyler, S., Vogrig, R., Ward, D., Watson, B., Brunham, R. C., Krajden, M., Petric, M., Skowronski, D. M., Upton, C., and Roper, R. L. (2003). The Genome sequence of the SARS-associated coronavirus. Science 300, 1399-1404.
  • 3Peiris, J. S., Lai, S. T., Poon, L. L., Guan, Y., Yam, L. Y., Lim, W., Nicholls, J., Yee, W. K., Yan, W. W., Cheung, M. T., Cheng, V. C., Chan, K. H., Tsang, D. N., Yung, R. W., Ng, T. K., Yuen, K. Y., and SARS Study Group. (2003). Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361,1319-1325.
  • 4Rota, P. A., Oberste, M. S., Monroe, S. S., Nix, W. A., Campagnoli, R., Icenogle, J. P., Penaranda, S., Bankamp, B., Maher, K., Chen, M. H., Tong, S., Tamin, A., Lowe, L., Frace, M., DeRisi, J. L., Chen, Q., Wang, D., Erdman, D. D., Peret, T. C., Burns, C., Ksiazek, T. G., Rollin, P. E., Sanchez, A., Liffick, S., Holloway, B., Limor, J., McCaustland, K., Olsen-Rasmussen, M., Fouchier, R., Gunther, S., Osterhaus, A. D., Drosten, C., Pallansch, M. A., Anderson, L. J., and Bellini, W. J. (2003). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394-1399.
  • 5Holmes, K. V. (2003). SARS-associated coronavirus. N. Engl. J. Med. 348, 1948-1951.
  • 6Ksiazek, T. G., Erdman, D., Goldsmith, C. S., Zaki, S. R., Peret, T., Emery, S., Tong, S., Urbani, C., Comer, J. A., Lim, W., Rollin, P. E., Dowell, S. F., Ling, A. E., Humphrey, C. D., Shieh, W. J., Guarner, J., Paddock, C. D., Rota, P., Fields, B., DeRisi, J., Yang, J. Y., Cox, N., Hughes, J. M., LeDuc, J. W., Bellini, W. J., Anderson, L. J., and SARS Working Group. (2003). A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953-1966.
  • 7Tsang, K. W., Ho, P. L., Ooi, G. C., Yee, W. K., Wang, T., Chan-Yeung, M., Lam, W. K., Seto, W. H., Yam, L. Y., Cheung, T. M., Wong, P. C., Lam, B., Ip, M. S., Chan, J., Yuen, K. Y., and Lai, K. N. (2003). A cluster of cases of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1977-1985.
  • 8Duan, S. M., Zhao, X. S., Wen, R. F., Huang, J. J., Pi, G. H., Zhang, S. X., Han, J., Bi, S. L., Ruan, L., and Dong, X. P. (2003). SARS coronavirus is unusually stable in human specimens and in environment, but sensitive to heating and UV irradiation. Biomed. Environ. Sci. 16, 247-256.
  • 9Tanaka, K., Okawa, Y., Matsumoto, Y., and Fujita, T. (1997). Atomic-scale fabrication of novel surfaces using chemical reactions. Surf. Sci. 377-379, 744-753.
  • 10Rocca, M., Savio, L., Vattuone, L., Burghaus, U., Palomba, V., Novelli, N., Buatier de Mongeot, F., and Valbusa, U. (2000). Phase transition of dissociatively adsorbed oxygen on Ag (001). Phys. Rev. B. 61, 213-227.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部