摘要
本文考虑退化弱拟正则映射.利用Hodge分解、逆Holder不等式等工具,证明了其正则性结果:存在指数q1=q1(n,l,K)<l,使得对每一退化弱K拟正则映射f∈W1,qloc1(Ω,Rn),都有f∈W1,lloc(Ω,Rn),即f为退化拟正则映射.
In this paper, degenerate weakly quasiregular mappings are considered. The regularity result is proved by using the technique of Hodge decomposition and reverse Holder inequality: there exists q1=q1(n,l,K) <l , such that for every degenerate weakly K quasiregular mapping f∈W1,qloc1(Ω,Rn), we have f∈ W1,tloc(Ω,Rn), that is, f is a degenerate quasiregular mapping.
基金
国家自然科学基金(19531060)
国家教育部博士点基金(97024811)
河北大学博士科研启动基金资助项目