期刊文献+

退化弱拟正则映射的正则性 被引量:5

Regularity of Degenerate Weakly Quasiregular Mappings
下载PDF
导出
摘要 本文考虑退化弱拟正则映射.利用Hodge分解、逆Holder不等式等工具,证明了其正则性结果:存在指数q1=q1(n,l,K)<l,使得对每一退化弱K拟正则映射f∈W1,qloc1(Ω,Rn),都有f∈W1,lloc(Ω,Rn),即f为退化拟正则映射. In this paper, degenerate weakly quasiregular mappings are considered. The regularity result is proved by using the technique of Hodge decomposition and reverse Holder inequality: there exists q1=q1(n,l,K) <l , such that for every degenerate weakly K quasiregular mapping f∈W1,qloc1(Ω,Rn), we have f∈ W1,tloc(Ω,Rn), that is, f is a degenerate quasiregular mapping.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第4期603-608,共6页 数学研究与评论(英文版)
基金 国家自然科学基金(19531060) 国家教育部博士点基金(97024811) 河北大学博士科研启动基金资助项目
关键词 退化弱拟正则映射 HODGE分解 逆Holder不等式 正则性 degenerate weakly quasiregular mappings Hodge decomposition reverse Holder inequality regularity.
  • 相关文献

参考文献8

  • 1IWANIEC T, MARTIN G. Quasiregular mappings in even dimensions [J]. Acta Math., 1993, 190: 29-81.
  • 2IWANIEC T. p-harmonic tensors and quasiregular mappings [J]. Ann. Math., 1992, 136: 589-624.
  • 3RESHETNYAK YU G . Space Mappings with Bounded Distortion [M]. Trans. Math. Monographs, Amer. Math. Soc., 1989, 37.
  • 4GIAQUINTA M. Miltiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems [M]. Ann. Math. Stud., Princeton Univ. Press, 1983, 105.
  • 5IWANIEC T, SBORDONE C. On the integrability of the Jacobian under minimal hypothesis [J]. Arch. Rat. Mech. Anal., 1992, 119: 129-143.
  • 6IWANIEC T, SBORDONE C. Weak minima of variational integrals [J]. J. Reine. Angew, Math., 1994, 454: 143-161.
  • 7LEWIS J. On very weak solutions of certain elliptic systems [J]. Comm. Part. Diff. Equ., 1993, 18(9-10): 1515-1537.
  • 8郑神州,方爱农.关于退化的拟正则映射[J].数学年刊(A辑),1998,19A(6):741-748. 被引量:7

共引文献6

同被引文献70

  • 1高红亚,叶玉全,谢素英.UNIQUENESS FOR SOLUTIONS OF NONHOMOGENEOUS A -HARMONIC EQUATIONS WITH VERY WEAK BOUNDARY VALUES[J].Journal of Shanghai Jiaotong university(Science),2001,6(1):78-80. 被引量:2
  • 2高红亚,赵洪亮.保向形式Jacobi行列式的可积性[J].中国科学(A辑),2005,35(9):1060-1070. 被引量:2
  • 3BEKYAIH.一阶椭圆型微分方程组与边值问题及其在薄壳理论上的应用[M].北京:高等教育出版社,1960..
  • 4方爱农.Thefinite deformation and Beltrami equation inRn.数学进展,1997,26(2):187-188.
  • 5Reshetnyak Y G. Space mappings with bounded distortion. Trans. Math. Monographs, Vol. 73, Amer. Math. Soc., Providence, RI 1989.
  • 6Iwaniec T and Martin G. Quasiregular mappings in even dimensions. Acta Math., 1993, 190: 29-81.
  • 7Iwaniec T. p-harmonic tensors and quasiregular mappings. Ann. of Math., 1992, 136: 589-624.
  • 8Iwaniec T and Martin G. Geometric Function Theory and Nonlinear Analysis. Clarendon Press, Oxford, 2001.
  • 9Faraco D and Zhong X. A short proof of the self-improving regularity of quasiregular mappings. Proc. Amer. Math. Soc., 2006, 134(1): 187-192.
  • 10Hedberg L I. On certain convolution inequalities. Proc. Amer, Math. Soc., 1972, 36: 505-510.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部