期刊文献+

基于稀疏约束的低复杂度可变分数时延滤波器

Low-Complexity Design of Sparse-Constrained Variable Fractional Delay Filter
下载PDF
导出
摘要 针对基于Farrow结构的可变分数时延(Variable fractional delay,VFD)滤波器需求解大量子滤波器系数这一关键问题,本文将稀疏约束理论引入滤波器的权系数优化中,研究具有稀疏系数的Farrow结构滤波器。在极大极小(Minimax)准则下,通过添加L1正则化约束项改进权系数优化模型,在系数(反)对称性基础上进一步增加系数的稀疏度。然后,采用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行权系数迭代求解。仿真实验表明,本文提出的基于稀疏约束的VFD滤波器在保证高延迟精度的同时,乘法器和加法器分别减少了47.69%和58.60%,极大地降低了系统运算量以及复杂度。 Since variable fractional delay(VFD)filter contains a large number of coefficients to be solved,this paper presents a study on sparse-constrained Farrow structure variable fractional delay filter.We add a L1 regularization constraint to further enhance the sparsity based on coefficient symmetry and optimize its frequency response to approximate a desired frequency response in the minimax error sense.In addition,the alternating direction method of multipliers(ADMM)algorithm is used to iteratively obtain the filter coefficients.Simulation experiments demonstrate that the proposed sparse-constrained VFD filter not only ensures high delay accuracy but also reduces the use of multipliers and adders by 47.69% and 58.60% respectively,thus lowering system computation and complexity greatly.
作者 王静雯 周文静 沈明威 韩国栋 WANG Jingwen;ZHOU Wenjing;SHEN Mingwei;HAN Guodong(College of Computer and Information Engineering,Hohai University,Nanjing 211106,China;The 54th Reasearch Institute of CETC,Shijiazhuang 050081,China)
出处 《数据采集与处理》 CSCD 北大核心 2024年第2期481-489,共9页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(62271190) 江苏省自然科学基金(BK20221499)。
关键词 稀疏约束 可变分数时延滤波器 极大极小 交替方向乘子法 FARROW结构 sparse-constrained variable fractional delay(VFD)filter minimax alternating direction method of multipliers(ADMM) Farrow structure
  • 相关文献

参考文献2

二级参考文献17

  • 1黄翔东,王兆华.基于两种对称频率采样的全相位FIR滤波器设计[J].电子与信息学报,2007,29(2):478-481. 被引量:12
  • 2Mahesh R, Vinod A P. Coefficient decimation approach for realizing reconfigurable finite impulse response filters [C ]//IEEE International Symposium on Circuits and Systems. Seattle, USA, 2008: 81- 84.
  • 3Mahesh R, Vinod A P. Low complexity flexible filter banks for uniform and non-uniform channelisation in software radios using coefficient decimation [J]- lET Circuits, Devices & Systems, 2011, 5 ( 3 ) : 232 - 242.
  • 4Lin M, Vinod A P, See C M S. A new flexible filter bank for low complexity spectrum sensing in cognitive radios [ J ] Journal of Signal Processing Systems, 2011, 62(2) : 205 -215.
  • 5Smitha K G, Vinod A P. A new low power reconfigu- rable decimation-interpolation and masking based filter architecture for channel adaptation in cognitive radio handsets [J]. Physical Communication, 2009, 2 ( 1/ 2) : 47-57.
  • 6Parks T, McClellan J. Chebyshev approximation for non- recursive digital filters with linear phase [ J ] IEEE Trans- actions on Circuit Theory, 1972, 19(2) : 189 - 194.
  • 7Sheikh Z U, Gustafsson O. Linear programming design of coefficient decimation FIR filters [ J ]. IEEE Trans- actions on Circuits and Systems 11: Express Briefs, 2012, 59(1) : 60-64.
  • 8Donoho D L. Compressed sensing [ J ]. 1EEE Transac- tions on Information Theory, 2006, 52(4) : 1289 -1306.
  • 9Baran T, Wei D, Oppenheim A V. Linear programming algorithms for sparse filter design [ J ] IEEE Transac- tions on Signal Processing, 2010, 58(3) : 1605 - 1617.
  • 10Wu C, Zhang Y, Shi Y, et al. Sparse FIR filter design using binary particle swarm optimization [ J ]. IEICE Transactions on Fundamentals of Electronics, Communica- tions and Computer Sciences, 2014, 97(12) : 2653 -2657.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部