摘要
骨膜作为骨缺损修复过程中营养物质的来源及膜内成骨过程中的核心位点,其结构和功能的重建对大尺度骨缺损的修复起到极其重要的作用。基于此,为了模拟天然骨膜的结构和功能,将聚醚砜(PES)和羟基磷灰石(HAp)混合,通过静电纺丝制备HAp@PES静电纺纤维膜(HPES),然后通过膜液界面培养法与细菌纤维素(BC)复合,获得了具有微米―纳米结构的BC/HAp@PES(BC/HPES)支架。扫描电镜结果表明,该支架微米―纳米纤维交错分布,且HAp成功复合在微米纤维上。所制备的支架具有良好的力学性能。进一步研究表明,成骨细胞在支架表面表现出良好的增殖和铺展能力,不仅如此,该支架还具有良好的成骨分化诱导能力。因此,这种具有仿生微纳纤维结构且负载HAp的骨膜支架有望用于大尺度骨缺损修复领域。
Rebuilding the periosteum's structure and function is crucial for the healing of large-scale bone defects because the periosteum serves as a source of nutrients and is the central location of intramembranous osteogenesis during the healing of bone.Herien,in order to mimic the composition and functionality of the natural periosteum,mixed polyethersulfone(PES)and HAp to prepare HAp@PES electrospun fiber membrane(HPES)by electrospinning and then composited them with bacterial cellulose(BC)by the membrane-liquid interface culture method to obtain the BC/HAp@PES(BC/HPES)scaffold with a micron-nano fibrous structure.Scanning electron microscopy(SEM)analysis confirms that the scaffold exhibits a staggered distribution of micron-nano fibers,and HAp was successfully compounded on the micronfibers.The prepared scaffold displays good mechanical properties.Subsequent research revealed that osteoblasts showed good proliferation and spreading ability on the surface of the scaffold,and the scaffold also had good osteogenic differentiation induction ability.Thus,this periosteum scaffold with biomimetic micro-nano fiber structure and HAp-loaded is expected to be used in the field of large-scale bone defect repair.
作者
要武杰
张全超
朱享波
杨志伟
万怡灶
YAO Wujie;ZHANG Quanchao;ZHU Xiangbo;YANG Zhiwei;WAN Yizao(Jiangxi Key Laboratory of Nanobiomaterials,East China Jiaotong University,Nanchang,330013,China;School of Materials Science and Engineering,East China Jiaotong University,Nanchang,330013,China;School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China)
出处
《纤维素科学与技术》
CAS
2024年第1期19-27,I0001,共10页
Journal of Cellulose Science and Technology
基金
国家自然科学基金项目(32260238,51973058)。
关键词
细菌纤维素
微纳纤维
羟基磷灰石
人工骨膜
膜液界面培养法
bacterial cellulose
micro-nano fibers
hydroxyapatite
artificial periosteum
membrane-liquid interface culture