期刊文献+

ResNet50模型在肺炎识别分类中的应用

Application of ResNet50 in Pneumonia Identification and Classification
下载PDF
导出
摘要 为了提高医学图像中肺炎的识别和分类效率,本文使用ResNet50模型对COVID图像、Lung_Opacity图像、Normal图像和Pneumonia图像进行识别分类。通过比较ResNet50与AlexNet和GoogLeNet对肺炎图像分类的准确率、F1值、召回率、精确率、特异性评价指标的差别,表明了ResNet50较其他模型具有更好的图像识别和分类性能。 In order to improve the recognition and classification efficiency of pneumonia in medical images,this paper uses the ResNet50 model to recognize and classify COVID images,Lung-Opacity images,Normal images,and Pneumonia images.By comparing the differences in accuracy,F1 value,recall,accuracy,and specificity evaluation indicators between ResNet50 and AlexNet and GoogLeNet for pneumonia image classification,it is demonstrated that ResNet50 has better image recognition and classification performance than other models.
作者 彭航 邓锡泽 牛玉霞 刘洋 PENG Hang;DENG Xize;NIU Yuxia;LIU Yang(School of Computer Science and Engineering,North Minzu University,Yinchuan,China,750021;Key Laboratory of Image and Graphics Intelligent Processing of State Ethnic Affairs Commission,North Minzu University,Yinchuan,China,750021)
出处 《福建电脑》 2024年第4期9-13,共5页 Journal of Fujian Computer
基金 宁夏自然科学基金(No.2023AAC03293)资助。
关键词 肺炎 图像识别 残差网络模型 肺炎分类 Pneumonia Image Recognition ResNet50 Model Classification of Pneumonia
  • 相关文献

参考文献2

二级参考文献24

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部