期刊文献+

基于LC-GAN的电力碳排放数据异常检测方法

Detection Method for Abnormal Carbon Emission Data of Electric Power Based on LC-GAN
下载PDF
导出
摘要 针对目前电力碳排放数据存在的坏数据虚假注入问题,提出一种基于生成对抗网络的电力碳排放数据异常检测方法。首先构建面向时序数据的改进生成对抗网络,引入双层长短期记忆网络,深入挖掘时序数据的内在联系;再通过生成对抗网络改进模型的生成器和判别器的共同打分,判别电力碳排放数据异常值;最后在华东某省碳排放监测平台进行电力碳排放数据测试。结果表明,基于生成对抗网络改进模型的电力碳排放数据异常检测方法对抗训练稳定、损失函数收敛速度快,检出率为87.5%,针对电力碳排放时序异常数据检测的准确度较高。 Considering the problem of false injection of bad data in current electricity carbon emission data,a detection method for electricity carbon emission data anomalies based on generative adversarial networks was proposed.Firstly,the improved generation adversarial network for time series data was constructed,and the two-layer long short-term memory network was introduced to deeply mine the internal relationship of time series data;then,the generator and discriminator of the improved model of the generative adversarial network were scored together to identify the anomalies of the electric power carbon emission data;finally,carbon emission data testing for electricity was conducted on a carbon emission monitoring platform in a certain province in East China.The results show that the method of abnormal detection of power carbon emissions data based on the improved generative adversarial network model has stable confrontation training,fast convergence speed of loss function,and a detection rate of 87.5%.The accuracy of abnormal data detection for electric power carbon emissions time series is high.
作者 张钰 吕干云 胥家伟 刘柏岑 臧禹 Zhang Yu;Lyu Ganyun;Xu Jiawei;Liu Baicen;Zang Yu(School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing Jiangsu 211167,China;State Grid Jiangsu Xuyi Power Supply Company,Huai'an Jiangsu 211700,China)
出处 《电气自动化》 2024年第2期91-94,共4页 Electrical Automation
基金 国家自然科学基金(51577086) 江苏“六大人才高峰”创新团队(TD-XNY004) 国家电网有限公司科技项目(DSY202205)。
关键词 电力碳排放 生成对抗网络 双层长短期记忆网络 时序数据 数据异常检测 electric power carbon emissions generative adversarial network two-layer long short-term memory network time series data data anomaly detection
  • 相关文献

参考文献13

二级参考文献205

共引文献1047

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部