期刊文献+

电力物联网移动边缘计算任务卸载策略

Task unloading strategy of power internet of things mobile edge computing
下载PDF
导出
摘要 由于云计算框架中的传播延迟无法满足电力物联网对低延迟和可靠性的要求,在移动边缘计算框架的基础上,提出一种基于电力物联网的云-边缘网络结构,并对业务响应时延进行建模。通过约束优化和改进遗传算法相结合求解优化模型,得出最优计算卸载策略。通过仿真进行对比分析,验证提出的移动边缘计算卸载策略的有效性。结果表明,该策略在提高业务处理可靠性的同时,也大幅度降低了故障情况下业务响应时延,与仅重传策略的延迟性能相比,该策略延迟性能提高了6.4%。综上,该研究可对电力物联网的发展提供一定的参考和借鉴。 For the propagation delay in the cloud computing framework,it is increasingly difficult to meet the requirements of low delay and reliability of the power Internet of things.Based on the mobile edge computing framework,a cloud-edge network structure based on the power Internet of things is proposed,and models the service response delay.The optimization model is solved through the combination of constraint optimization and improved genetic algorithm,and the optimal computing unloading strategy is obtained.The effectiveness of the proposed unloading strategy of mobile edge computing is verified by simulation.The results show that the proposed strategy not only improves the reliability of service processing,but also greatly reduces the service response delay in case of failure.Compared with the delay performance of the retransmission only strategy,the delay performance of the strategy is improved by 6.4%.Therefore,the research provides a certain reference for the development of power Internet of things in China.
作者 李宁 于晓清 陈炜 王玄 曹凯 LI Ning;YU Xiaoqing;CHEN Wei;WANG Xuan;CAO Kai(Maintenance Company,State Grid Ningxia Electric Power Company,Yinchuan 750001,China)
出处 《电测与仪表》 北大核心 2024年第4期155-160,共6页 Electrical Measurement & Instrumentation
基金 国家电网有限公司科技项目(SGITG-2018ZXCG-FF)。
关键词 电力物联网 约束优化 遗传算法 移动边缘计算 卸载策略 power Internet of Things constraint optimization genetic algorithm mobile edge computing unloading strategy
  • 相关文献

参考文献14

二级参考文献155

  • 1Thanhtung HA,Yongjun ZHANG,V.V.THANG,Jianang HUANG.Energy hub modeling to minimize residential energy costs considering solar energy and BESS[J].Journal of Modern Power Systems and Clean Energy,2017,5(3):389-399. 被引量:17
  • 2李庚银,罗艳,周明,王宇宾.基于数学形态学和网格分形的电能质量扰动检测及定位[J].中国电机工程学报,2006,26(3):25-30. 被引量:88
  • 3马莉,刘健,韦力.配电网三相潮流的简化分析[J].华北电力大学学报(自然科学版),2007,34(1):31-36. 被引量:2
  • 4Merv Adrian. Big data: it's going mainstream and it's your next opportunity[J]. Teradata Magazine, 2011, 5(1): 3-5.
  • 5Manyika J, Chui M, Brown B, et al. Big data: the next frontier for innovation, competition, and productivity [R]. USA: MckinseyGlobal Institute, 2011.
  • 6JiaWei Han, Micheline K, Jian P. Data mining: Concepts and technique[M]. 3rded. New York.. Elsevier, 2011.
  • 7曲朝阳,王蕾,曲楠,等.智能电网知识处理与可视化模型方法[M].北京:科学出版社,2013.
  • 8Quinlan J R. Programs for machine learning[M]. San Francisco: Morgan Kaufmann Publishers, 1993: 23-26.
  • 9Breiman L, Frieman J, Olshen R, et al. Classification and regression trees[M]. Chapman and Hall/CRC, 1984: 32-35.
  • 10Mehta M, Agrawal R, Rissanen J. SLIQ: A fast scalable classifier for data mining[C]//Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology. France: EDBT, 1996: 67-78.

共引文献914

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部