期刊文献+

最大度不小于6的伪-Halin图的完备色数 被引量:2

On the Complete Chromatic Number of Pseudo-Halin Graphs with △(G)≥6
下载PDF
导出
摘要 设G为2-连通平面图,若存在G的面f0,其中f0的边界构成的圈上无弦且V(f0)中的点的度至少为3,使得在G中去掉f0边界上的所有边后得到的图为除V(f0)中的点外度不小于3的树T,则称G为伪-Halin图;若V(f0)中的点全为3度点,则称G为Halin-图.本文研究了这类图的完备色数,并证明了对△(G)≥ 6的伪-Halin图 G有 Xc(C)=△(G)+1.其中△(G)和Xc(G)分别表示G的最大度和完备色数. Let G(V,E) be a 2-connected plane graph, f0 a face without chord on its boundary (a cycle) and d(.v)≥ 3 for every v ∈ V(f0) . If the graph T obtained from G(V,E) by deleting all edges on the boundary of f0 is a tree of which all vertices v ∈ V\V(f0) satisfy d(.v)≥ 3 , then G(V,E) is called a Pseudo-Halin graph; G(V,E) is said to be Halin-graph iif d(v) = 3 for every v ∈ V(f0) . In this paper,we proved that for any Pseudo-Halin graph with △(G) ≥ 6 , have XC(G) = △(G) + 1 . Where △(G) , Xc(G) denote the maximum degree and the complete chromatic number of G , respectively. V(f0) denotes the vertices on the boundary of f0.
出处 《Journal of Mathematical Research and Exposition》 CSCD 北大核心 2002年第4期663-668,共6页 数学研究与评论(英文版)
基金 国家自然科学基金资助项目(19871036)
关键词 伪-Halin图 Halin-图 完备色数 Pseudo-Halin graph complete coloring complete chromatic number.
  • 相关文献

参考文献1

二级参考文献9

  • 1Halin R. Studies on Minimally n- connected Graph, in:Comb. Math. and its applications[ M ]. (Proc. Conf. Oxrod), London:Academic Press, 1969.
  • 2Kronk H V. Mitchem J. A seven - colour Theorem onthe Sphere[J]. Discrete Math., 1973(5) :253 -260.
  • 3Zhang Zhongfu, Wang Jianfang, Wang Weifan, et al.The Complete Chromatic Number of Some Planar Graphs[J]. Scientia Sinica (Science in China ) , Series A. 1993(4) :395 - 400.
  • 4Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York: The Macmillan Press Ltd., 1976.
  • 5Odile Favaron, Hao Li, Schelp R H., Strong edge colorings of graphs[J]. Discrete Mathematics, 1996,159:103- 109.
  • 6Bums A C. Vertex- distinguishing proper edge - colorings[J]. J. of Graph Theory, 1997,22(2):73-82.
  • 7Zhang Zhongfu, Liu Linzhong, Wang Jianfang. On the Adjacent Strong Edge Coloring of Graphs [J]. App.Math. Lett. , Accept to appenr. 2001, (6) :489- 491.
  • 8Duffin R J. Topology of Series- parallel networks[J]. J.Math. Analy. App., 1965,10:303-318.
  • 9Chartrand G. Linda Lesniak - Foster, Graphs and Digraphs [M]. CA. ind. edition Wadsworth Brooks/ Cole, Monterey, 1986.

共引文献3

同被引文献13

  • 1吴建良.外平面图的完备染色[J].山东矿业学院学报,1996,15(2):219-222. 被引量:8
  • 2马巧灵,单伟,吴建良.Halin图的有点面约束的边染色[J].山东大学学报(理学版),2007,42(4):24-27. 被引量:4
  • 3BONDY J A, LOVASZ L. Lengths of cycles in Halin graphs[J].J Graph Theory, 1985,8: 397-410.
  • 4HALIN R. Studies on minimally n-connected graphs [ M]//Comb Math and its applications. London: Academic Press, 1996.
  • 5KRONK H V, MITCHEM J A. Seven-color therom on the sphere[J].Discrete Math, 1973,5(3) : 253-260.
  • 6ZHANG Zhongfu, LIU Linzhong. On the complete chromatic number of Halin-graphs[ J]. Acta Mathematicae Applicatae Sini- ca: English Series. 1997. 13(1):102-106. DOI._ I0. 1007/BF02020485.
  • 7BONDY J A, MURTY U S R. Graph theory with application[M]. New York: Macmillan, 1976.
  • 8BONDY J A. Pancyclic graphs: recent results, infinite and finite sets[J].Colloq Math Soc JOnos Bolyai, 1973, 10:181-187.
  • 9LOVASZ L, PLUMMER M D. On a family of planar bicritical graphs [ J ]. Proceedings of the London Mathematical Society, /975,30 : 160-176.
  • 10YAO Ming, YAO Bing. A note on the definition of a tree[C]//The proceeding of the 2nd International Conference on Bio- medical Engineering and Informatics. Tianjin: IEEE, 2009: 2137-2141.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部