摘要
The development of nanoelectronics and nanotechnologies has been boosted significantly by the emergence of 2D materials because of their atomic thickness and peculiar properties,and developing a universal,precise patterning technology for single-layer 2D materials is critical for assembling nanodevices.Demonstrated here is a nanomachining technique using electrical breakdown by an AFM tip to fabricate nanopores,nanostrips,and other nanostructures on demand.This can be achieved by voltage scanning or applying a constant voltage while moving the tip.By measuring the electrical current,the formation process on single-layer materials was shown quantitatively.The present results provide evidence of successful pattern fabrication on single-layer MoS2,boron nitride,and graphene,although further confirmation is still needed.The proposed method holds promise as a general nanomachining technology for the future.
基金
supported by the National Natural Science Foundation of China(Grant Nos.12075191,12388101,and 12241201)
the Fundamental Research Funds for the Central Universities(Grant No.D5000230120)
the Natural Science Basic Research Program of Shaanxi Province(Grant No.2023-JC-YB-541).