期刊文献+

HiLog:OpenHarmony的高性能日志系统

HiLog:High Performance Log System of OpenHarmony
下载PDF
导出
摘要 日志是计算机系统中记录事件状态信息的的重要载体,日志系统负责计算机系统的日志生成、收集和输出.OpenHarmony是新兴的、面向全设备、全场景的开源操作系统.在所述工作之前,包括日志系统在内OpenHarmony有许多关键子系统尚未构建,而OpenHarmony的开源特性使第三方开发者可以为其贡献核心代码.为了解决Open Harmony日志系统缺乏的问题,主要开展如下工作:(1)分析当今主流日志系统的技术架构和优缺点;(2)基于OpenHarmony操作系统的异构设备互联特性设计HiLog日志系统模型规范;(3)设计并实现第1个面向OpenHarmony的日志系统HiLog,并贡献到OpenHarmony主线;(4)对HiLog日志系统的关键指标进行测试和对比试验.实验数据表明,在基础性能方面,HiLog和Log的日志写入阶段吞吐量分别为1500 KB/s和700 KB/s,相比Android日志系统吞吐量提升114%;在日志持久化方面,HiLog可以3.5%的压缩率进行持久化,并且丢包率小于6‰,远低于Log.此外,HiLog还具备数据安全、流量控制等新型实用能力. Log is an important carrier of a computer system,which records the states of events,and a log system is responsible for log generation,collection,and output.OpenHarmony is a new open-source,distributed operating system for smart devices in all scenarios of a fully-connected world.Prior to the work described in this study,many key subsystems of OpenHarmony,including the log system,had not been built.The open-source feature of OpenHarmony enables third-party developers to contribute core codes.To solve the problem of the lack of a log system of OpenHarmony,this paper mainly does the following work:①It analyzes the technical architecture,advantages,and disadvantages of today’s popular log systems.②It clarifies the model specifications of the log system HiLog according to the interconnection feature of heterogeneous devices in OpenHarmony.③It designs and implements the first log system HiLog of OpenHarmony and contributes it to the OpenHarmony trunk.④It conducts comparative experiments on the key indicators of HiLog.The experimental data show that in terms of basic performance,the throughput of HiLog and Log is 1500 KB/s and 700 KB/s,respectively,which indicates that HiLog has a 114%improvement over the log system of Android.In terms of log persistence,the packet loss of HiLog is less than 6‰with a compression rate of 3.5%for persistency,much lower than that of Log.In addition,HiLog also has some novel practical functions such as data protection and flow control.
作者 吴圣垚 王枫 武延军 凌祥 屈晟 罗天悦 吴敬征 WU Sheng-Yao;WANG Feng;WU Yan-Jun;LING Xiang;QU Sheng;LUO Tian-Yue;WU Jing-Zheng(Intelligent Software Research Center,Institute of Software,Chinese Academy of Sciences,Beijing 100190,China;State Key Laboratory of Computer Science(Institute of Software,Chinese Academy of Sciences),Beijing 100190,China)
出处 《软件学报》 EI CSCD 北大核心 2024年第4期2055-2075,共21页 Journal of Software
基金 中国科学院战略性先导科技专项(XDA0320000) 国家自然科学基金青年项目(62202457) 中国博士后科学基金(2022M713253)。
关键词 操作系统 日志系统 开源软件 数据安全 流量控制 operating system log system open-source software data security flow control
  • 相关文献

参考文献5

二级参考文献52

  • 1徐林,张德运,孙钦东,张晓彤.基于NAPI的数据包捕获技术研究[J].计算机工程与应用,2004,40(26):138-139. 被引量:8
  • 2Coverity. Coverity Scan: 2012 Open Source Report. 2013. http://www.coverity.com/.
  • 3Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S. Be conservative: enhancing failure diagnosis with proactive logging. In: Proe. of the 10th Syrup. on Operating Systems Design and Implementation (OSDI). 2012. 293-306.
  • 4Yuan D, Park S, Zhou Y. Characterizing logging practices in open-source software. In: Proc. of the 2012 Int'l Conf. on Software Engineering. 2012. 102-112. [doi: 10.1109/ICSE.2012.6227202].
  • 5Kavulya SP, Joshi K, Di Giandomenico F, Narasimhan P. Failure Diagnosis of Complex Systems, Resilience Assessment and Evaluation of Computing Systems. Springer-Verlag, 2012. 239-261. [doi: 10.1007/978-3-642-29032-9].
  • 6Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T. Where do developers log? An empirical study on logging practices in industry. In: Proc. of the 36th Int'l Conf. on Software Engineering. 2014.24-33. [doi: 10.1145/2591062.2591175 ].
  • 7Jiang W, Hu C, Pasupathy S, Kanevsky A, Li Z, Zhou Y. Understanding Customer Problem Troubleshooting from Storage System Logs. In: Proc. of the 7th USENIX Conf. on File and Storage Technologies (FAST). 2009.43-56.
  • 8Prewett JE. Analyzing cluster log files using logsurfer. In: Proc. of the 4th Annual Conf. on Linux Clusters. 2003.
  • 9Hellerstein JL, Ma S, Perng CS. Discovering actionable patterns in event data. IBM Systems Journal, 2002,41(3):475-493. [doi: 10. 1147/sj.413.0475].
  • 10Ma S, Hellerstein JL. Mining partially periodic event patterns with unknown periods. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 205-214. [doi: 10.1109/ICDE.2001.914829].

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部