期刊文献+

Artificial optoelectronic synapse based on spatiotemporal irradiation to source-sharing circuitry of synaptic phototransistors

原文传递
导出
摘要 To overcome the intrinsic inefficiency of the von Neumann architecture,neuromorphic devices that perform analog vector–matrix multiplication have been highlighted for achieving power-and time-efficient data processing.In particular,artificial synapses,of which conductance should be programmed to represent the synaptic weights of the artificial neural network,have been intensively researched to realize neuromorphic devices.Here,inspired by excitatory and inhibitory synapses,we develop an artificial optoelectronic synapse that shows both potentiation and depression characteristics triggered only by optical inputs.The design of the artificial optoelectronic synapse,in which excitatory and inhibitory synaptic phototransistors are serially connected,enables these characteristics by spatiotemporally irradiating the phototransistor channels with optical pulses.Furthermore,a negative synaptic weight can be realized without the need for electronic components such as comparators.With such attributes,the artificial optoelectronic synapse is demonstrated to classify three digits with a high recognition rate(98.3%)and perform image preprocessing via analog vector-matrix multiplication.
出处 《InfoMat》 SCIE CSCD 2024年第2期131-141,共11页 信息材料(英文)
基金 Korea Institute of Science and Technology,Grant/Award Number:2E32242 KU-KIST Graduate School of Converging Science and Technology National Research Foundation of Korea,Grant/Award Number:2023R1A2C2003985 Institute for Information and Communications Technology Promotion,Grant/Award Number:2020-0-00841。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部