期刊文献+

Liquid metal compartmented by polyphenol-mediated nanointerfaces enables high-performance thermal management on electronic devices

原文传递
导出
摘要 The exponentially increasing heat generation in electronic devices,induced by high power density and miniaturization,has become a dominant issue that affects carbon footprint,cost,performance,reliability,and lifespan.Liquid metals(LMs)with high thermal conductivity are promising candidates for effective thermal management yet are facing pump-out and surface-spreading issues.Confinement in the form of metallic particles can address these problems,but apparent alloying processes elevate the LM melting point,leading to severely deteriorated stability.Here,we propose a facile and sustainable approach to address these challenges by using a biogenic supramolecular network as an effective diffusion barrier at copper particle-LM(EGaIn/Cu@TA)interfaces to achieve superior thermal conduction.The supramolecular network promotes LM stability by reducing unfavorable alloying and fluidity transition.The EGaIn/Cu@TA exhibits a record-high metallic-mediated thermal conductivity(66.1 W m^(-1) K^(-1))and fluidic stability.Moreover,mechanistic studies suggest the enhanced heat flow path after the incorporation of copper particles,generating heat dissipation suitable for computer central processing units,exceeding that of commercial silicone.Our results highlight the prospects of renewable macromolecules isolated from biomass for the rational design of nanointerfaces based on metallic particles and LM,paving a new and sustainable avenue for high-performance thermal management.
出处 《InfoMat》 SCIE CSCD 2024年第1期83-95,共13页 信息材料(英文)
基金 National Talents Program National Natural Science Foundation of China,Grant/Award Numbers:22108181,22178233 Talents Program of Sichuan Province Double First-Class University Plan of Sichuan University State Key Laboratory of Polymer Materials Engineering,Grant/Award Number:sklpme 2020-03-01 Sichuan Science and Technology Program,Grant/Award Number:2022YFN0070 The Sichuan Province Postdoctoral Special Funding。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部