摘要
为加速铜选矿废水(CMw)的资源化利用,采用CMw作为拌合水制备碱激发粉煤灰/矿渣(AAFS)胶凝材料,研究了不同CMw掺量对AAFS凝结时间、水化特性、水化产物、孔结构和抗压强度的影响。结果表明:在AAFS中掺入CMw会略微延长其凝结过程,但略微促进AAFS的水化过程,这与CMw的酸性、有机药剂残留和金属离子有关。通过掺入不同量CMw, AAFS的凝胶孔不断增加,而过渡孔体积逐渐减小,抗压强度呈现出先增大后略微降低的趋势。当CMw掺量为50%时,AAFS的抗压强度提升幅度最大,分别为12.23%(3 d)、21.07%(7 d)、16.74%(28 d)。研究结果可为铜选矿废水的资源化利用提供新的思路和参考。
This study employs copper mining wastewater(CMw)as mixing water to prepare alkali-activated fly ash/slag(AAFS)cementitious material,aiming to expedite the resourceful utilization of CMw.The influence of varying CMw dosages on the setting time,hydration characteristics,hydration products,pore structure,and compressive strength of AAFS was investigated through this study.The results indicate that the incorporation of CMw in AAFS slightly prolongs its setting process while slightly promoting the hydration process of AAFS.This phenomenon is attributed to the acidity of CMw,residual organic reagents,and metallic ions present.By adding varying amounts of CMw,the gel pores of AAFS continue increasing,while the transitional pores gradually decrease in volume.The compressive strength exhibits a trend of initial enhancement followed by a slight reduction.When the CMw dosage reaches 50%,the compressive strength of AAFS shows the greatest improvement,with increments of 12.23%(3 d),21.07%(7 d),and 16.74%(28 d),respectively.These research findings offer new insights and references for the resource utilization of copper mining wastewater.
作者
余梦龙
李进
谢剑凯
王永辉
赵成
李祥坤
YU Menglong;LI Jin;XIE Jiankai;WANG Yonghui;ZHAO Cheng;LI Xiangkun(School of Civil Engineering and Architecture,Anhui University of Science and Technology,Huainan 232001,China;State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,Anhui University of Science and Technology,Huainan 232001,China)
出处
《功能材料》
CAS
CSCD
北大核心
2024年第3期3165-3169,3183,共6页
Journal of Functional Materials
基金
国家自然科学基金(52008003)
安徽省住房城乡建设科学技术计划项目(2022-YF071)
安徽理工大学高层次引进人才科研启动基金(2022yjrc27)。
关键词
碱激发
铜选矿废水
水化特性
孔结构
抗压强度
alkali-activated
copper mining wastewater
hydration characteristics
pore structure
compressive strength