摘要
§1.引言
Galerkin方法是求解微分方程边值问题应用最广的一类有限元方法.文[1]利用配置点Galerkin方法研究了边值问题Ly=(a(x)y')'+b(x)y'+c(x)y=f(x),x∈I=(0,1),y(0)=y(1)=0的近似解.
The finite element solution of two points boundary value problem for nonlinear ordinary differential equation is studied by using the collocation-Galerkin method. The Jacobi points are introduced to establish high orders of accuracy for the approximate solution. Numerical results are presented for a sample problem.
出处
《数值计算与计算机应用》
CSCD
北大核心
2002年第4期316-320,共5页
Journal on Numerical Methods and Computer Applications