期刊文献+

应用液态金属的电力电子器件散热器设计

Design of Heat Sinks for Power Electronic Devices Using Liquid Metals
下载PDF
导出
摘要 绝大多数应用绝缘栅双极型晶体管(IGBT)模块的换流阀均采用水冷系统。尽管水冷却系统的散热技术已经相当成熟且具有许多优点,但随着电力电子器件散热功率的提高,传统的水冷系统逐渐无法满足这些器件的散热需求。针对现有的传统水冷散热系统模型,利用数值模拟分析技术,对比分析了不同的冷板材料(铜、铝)和冷却工质(水、液态金属)工况下替换其散热工质分别为去离子水和液态金属的散热效果。结果表明:采用铜和液态金属的散热系统的散热性能得到大大提高。在此基础上,提出了液态金属散热系统模型,并通过与传统冷却模型进行比较,凸显了其在散热性能上的明显优越性。 The vast majority of IGBT module converter valves use water-cooled systems.The heat dissipation technology of water cooling systems is mature and has many advantages,but with the increase of the heat dissipa⁃tion power of power electronic devices,traditional water cooling systems will gradually be unable to meet the heat dissipation needs of power electronic devices.Based on the existing traditional water-cooled heat dissipation sys⁃tem model,numerical simulation analysis techniques were used to compare and analyze the heat dissipation perfor⁃mance of the heat dissipation system using different cold plate materials(copper,aluminum)and cooling working fluids(water,liquid metal)under different working conditions.The heat dissipation working fluids were replaced with deionized water and liquid metal,respectively.The comparative analysis showed that the heat dissipation per⁃formance of the heat dissipation system using copper and liquid metal was greatly improved.On this basis,a liq⁃uid metal heat dissipation system model was proposed,and its high superiority in heat dissipation performance was demonstrated through comparison with traditional cooling models.
作者 王德辉 陈伟 王超群 WANG Dehui;CHEN Wei;WANG Chaoqun(State Grid Ultra High Voltage Branch,SMEPC,Shanghai 200063,China;Shanghai Power Transmission and Transformation Engineering Co.,Ltd.,Shanghai 201101,China)
出处 《电力与能源》 2024年第1期43-48,128,共7页 Power & Energy
关键词 液态金属 电力电子器件 散热技术 liquid metal power electronic devices heat dissipation technology
  • 相关文献

参考文献3

二级参考文献52

  • 1刘静,周一欣.以低熔点金属或其合金作流动工质的芯片散热用散热装置[P].中国发明专利,02131419.5,2002
  • 2Liu J, Zhou Y X, Lv Y G, et al. Liquid Metal Based Miniaturized Chip-Cooling Device Driven by Electromagnetic Pump[C]//Prcc of 2005 ASME Int'l Mech Eng Cong &Exp, 2005.
  • 3Ghoshal U, Grimm D, Ibrani S, et al. High-Performance Liquid Metal Cooling Loops[C]//Proc of the 21st SemiTherm Symp, 2005:16-19.
  • 4Deng Z S, Liu J. Capacity Evaluation of MEMS Based Micro Cooling Device Using Liquid Metal as Coolant[C]//Proc of IEEE Int'l Conf of Nano/Micro Engineered and Molecular Systems, 2006:1311-1315.
  • 5Ma K Q, Liu J. Liquid Metal Cooling in Thermal Management of Computer Chip[J].Frontiers of Energy and Power Engineering in China, 2007,1 (4) :384-402.
  • 6Ma K Q, Liu J. Heat Driven Liquid Metal Cooling Device for the Thermal Management of Computer Chip[J].Journal of Physics D: Applied Physics, 2007,40(15):4722-4729.
  • 7[17]VISWANNATH R,NAIR R,WAKHARKAR V,et al.Thermal performance challenges from silicon to systems [ J] . Intel Technology Journal, 2000, 3: 1-16.
  • 8[19]CHEN C H, ZENG S, MIKKELSEN J C, et al. Microfabricated electrokinetic micropump [J] . Abstracts of Papers of The American Chemical Society. 2000. 431.
  • 9[22]GHOSHAL U, GHOSHAL S, MCDOWELL C, et al. Enhanced thermoelectric cooling at cold junction interfaces [J] .Appl Phys Lett, 2002, 80: 3006-3008.
  • 10[23]MINER A, MAJUMDAR A, GHOSHAL U. Thermoelectromechanical refrigeration based on transient thermoelectric effects[J]. Appl Phys Lett, 1999, 75: 1176-1178.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部