摘要
为研究在电力社会耦合网络中电力社交用户受到虚假信息影响的后耦合网络的鲁棒性变化,基于用户自身的影响力以及虚假信息影响力,考虑虚假信息免疫节点,改进了信息传播的独立级联传播模型,将网络中受影响节点与耦合网络鲁棒性计算的渗流模型相结合,并在此基础上拓展了1种电力社会耦合网络鲁棒性评估指标.通过仿真实验模拟发现改进的独立级联模型传播模型避免了影响的随机性,影响结果合理,耦合网络鲁棒性计算的理论值与实际验证值相符,电力社会耦合网络鲁棒性评估指标结论与耦合网络鲁棒性变化情况符合,结果表明,社交网络中初始影响节点比例对耦合网络的鲁棒性具有一定影响,且电力-Facebook耦合网络的鲁棒性优于电力-Last FM耦合网络.
In order to study the robustness variation of power social users in power social coupled network affected by false information,based on the influence of users and false information,and the nodes that are immunized from false information,we improved the independent cascade model of information propagation,and combine the affected nodes in a network with the percolation model for the coupled network robustness calculation,and a robustness assessment index of power social coupling network is extended.Through the simulation experiments found that the improved independent cascade model avoids the randomness of influence,the influence result is reasonable,the theoretical value of the coupling network robustness calculation is consistent with the actual verification value,the conclusion of the power social coupling network robustness assessment index is consistent with the variation of the coupling network robustness,the result shows that the initial influence node proportion in the social network has a certain influence on the robustness of the coupling network,and the robustness of the power-Facebook coupling network is stronger than the power-Last FM coupling network.
作者
鲁东兴
李琰
徐天奇
LU Dong-xing;LI Yan;XU Tian-qi(The Key Laboratory of Cyber-Physical Power System of Yunnan Colleges and Universities,Yunnan Minzu University,Kunming 650504,China)
出处
《云南民族大学学报(自然科学版)》
CAS
2024年第2期242-250,共9页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(62062068,61761049)
云南省教育厅科学研究基金(2022Y456)
关键词
电力社会网络
鲁棒性
信息传播模型
渗流理论
power social network
robustness
information propagation model
percolation theory