期刊文献+

GhWDL3 is involved in the formation and development of fiber cell morphology in upland cotton(Gossypium hirsutum L.)

下载PDF
导出
摘要 Background Cotton fiber is a model tissue for studying microtubule-associated proteins(MAPs).The Xklp2(TPX2)proteins that belong to the novel MAPs member mainly participate in the formation and development of microtubule(MT).However,there is a lack of studies concerning the systematic characterization of the TPX2 genes family in cotton.Therefore,the identification and portrayal of G.hirsutum TPX2 genes can provide key targets for molecular manipula-tion in the breeding of cotton fiber improvement.Result In this study,TPX2 family genes were classified into two distinct subclasses TPXLs and MAP genes WAVE DAMP-ENED2-LIKE(WDLs)and quite conservative in quantity.GhWDL3 was significantly up-regulated in 15 days post anthe-sis fibers of ZRI-015(an upland cotton with longer and stronger fiber).GhWDL3 promotes all stem hairs to become straight when overexpressed in Arabidopsis,which may indirectly regulate cotton fiber cell morphology during fiber development.Virus induced gene silencing(VIGS)results showed that GhWDL3 inhibited fiber cell elongation at fiber development periods through regulating the expression of cell wall related genes.Conclusion These results reveal that GhWDL3 regulated cotton fiber cell elongation and provide crucial information for the further investigation in the regulatory mechanisms/networks of cotton fiber length.
出处 《Journal of Cotton Research》 CAS 2024年第1期58-68,共11页 棉花研究(英文)
基金 supported by the National Key Research and Development Program of China(2022YFD1200300) China Agriculture Research System(CARS-15-01).
  • 相关文献

参考文献4

二级参考文献55

  • 1Jin-Ying Gou,Ling-Jian Wang,Shuang-Ping Chen,Wen-Li Hu,Xiao-Ya Chen.Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis[J].Cell Research,2007,17(5):422-434. 被引量:49
  • 2Applequist WL, Cronn R, Wendel JF. Comparative development of fiber in wild and cultivated cotton. Evol Dev 2001; 3:3-17.
  • 3Kim H J, Triplett BA. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 2001; 127:1361- 1366.
  • 4Meinert MC, Delmer DP. Changes in biochemical composition of the cell wall in cotton fiber during development. Plant Physiol 1977; 59:1088-1097.
  • 5Smart LB, Vojdani F, Maeshima M, Wilkins Ta. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol 1998; 116:1539-1549.
  • 6Ruan YL, Llewellyn D J, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 2003; 15:952- 964.
  • 7Orford S J, Timmis JN. Specific expression of an expansin gene during elongation of cotton fibres. Biochim Biophys Acta 1998; 1398:342-346.
  • 8Harmer SE, Orford S J, Timmis JN. Characterization of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol Genet Genomics 2002; 268:1-9.
  • 9Orford S J, Timmis JN. Expression of a lipid transfer protein gene family during cotton fibre development. Biochim Biophys Acta 2000; 1453:275-284.
  • 10Li XB, Fan XP, Wang XL, Cai L, Yang Wc. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 2005; 17:859-75.

共引文献962

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部