期刊文献+

对转开式转子气动设计方法

Aerodynamic design method of contra-rotating open rotor
原文传递
导出
摘要 提出一种基于升力线理论的对转开式转子(contra-rotating open rotor,CROR)气动设计方法。以推力为设计目标,基于拉格朗日乘子法构建气动设计控制方程组。考虑高飞行马赫数对流动特征的影响,根据激盘模型,采用一道正激波模拟转子的增压过程。完成速度场预测后,利用压气机三维造型方法完成初始设计。初始设计完成后,对翼型折转角进行修正从而满足目标推力。研究表明,整个设计过程中只需2次计算流体力学(CFD)计算与再设计便可满足目标推力,所需翼型折转角修正量为−0.486°,设计结果的推力与目标推力的相对误差为−0.32%,设计方法高效且具有高的设计精度。 An aerodynamic design method of contra-rotating open rotor(CROR)based on lifting line theory was proposed.Utilizing Lagrange multiplier method,the aerodynamic design control equation of CROR was constructed to find the CROR meeting the thrust demand.Due to the influence of high flight Mach number on the flow characteristics,a positive shock wave was used to simulate the pressure rising process of rotor according to the actuator disk model.Based on the predicted velocity field,preliminary design of CROR was completed utilizing three-dimensional modeling method of compressor.After the preliminary design,turning angle was corrected to meet the thrust demand.The results showed that only two computational fluid dynamics(CFD)calculations and redesign in the whole design process were required to meet the thrust demand.The required turning angle correction was−0.486°.The relative error between design result and thrust demand was−0.32%.The design method was efficient and had good design accuracy.
作者 王启航 周莉 王占学 WANG Qihang;ZHOU Li;WANG Zhanxue(School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2024年第1期133-144,共12页 Journal of Aerospace Power
基金 国家自然科学基金(51876176,52076180,51906204) 国家科技重大专项(J2019-Ⅱ-0015-0036) 陕西省杰出青年基金(2021JC-10) 民机专项科研项目。
关键词 对转开式转子 升力线理论 涡格模型 拉格朗日乘子法 落后角模型 contra-rotating open rotor lifting line theory vortex lattice model Lagrange multiplier method deviation angle model
  • 相关文献

参考文献6

二级参考文献39

  • 1Carl Rohrbach. A report on the Aerodynamic Design and Wind Tunnel Test of a Prop -Fan Model[A]. AIAA/ SAE 12th Propulsion Conference, Palo Alto, California,1976.
  • 2Roy D. Hager, Deborah Vrabel. Advanced Turboprop Project[R]. NASA SP 495,1988.
  • 3Pablo Bellocq, Vishal Sethi, Luca Cerasi, et al. Advanced Open Rotor Performance Modelling Ibr Multidisciplinary Optimization Assessments [A]. Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, UK, 2010.
  • 4A. k. Weisbnch, J. Godston, E.S. Bradley. Technology and Benefits of Aircraft Counter Rotation Propellers[R]. NASACR 168253, 1982.
  • 5Hamilton Standard Division of United Technologies Corporation. Prop- fan Data Support Study Technical Report[R], NAS2 9750, Feb. 28, 1978.
  • 6D.M. Black,R. W. Menthe, H.S. Wainauski. Aerodynamic Design and Performance Testing of an Advanced 30 Swept, Eight Bladed Propeller at Mach Numbers From 0.2 to 0.85[R], NAS3 20219, Sep. 1978.
  • 7Adkins, N., and Liebeck, R. H. Design of Optimum Propellers, Journal of Propulsion and Power[J], 1994, 10(5): 676-682.
  • 8Adkins, N., and Liebeck, R. H.Design of Optimum Propellers[C], 21st Aerospace Sciences Meeting, Reno, NV, AIAA Paper 83 0190, Jan. 1983.
  • 9Martin Hepperle. Inverse Aero dynamic Design Procedure for Propellers Having a Prescribed Chord Length Distribution, Journal of aircraft[J], 2010,47(6):1867 1872.
  • 10Catherine M. Maksymiuk, Sally A. Watson, A Computer Program tbrEstimating the Aerodynamic Characteristics of NACA 16 Series Airfoils [P], NASA--TM- 85696, 1983.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部