摘要
Fibrosis occurs due to the excessive deposition of extracellular matrix caused by cell injury.After various types of tissue injury,the dysregulation of the internal response can eventually lead to the destruction of organ structure and dysfunction.There is increasing evidence that oxidative stress,which is characterized by excessive production of hydrogen peroxide(H_(2)O_(2)),is an important cause of fibrosis.Therefore,we synthesized a biosensitive and efficient electrochemical H_(2)O_(2)sensor based on PtNi nanoparticle-doped N-reduced graphene oxide(PtNi-N-rGO)to detect H_(2)O_(2)released from transforming growth factorβ1(TGFβ1)-induced myofibroblast.In addition,the sensor could easily detect changes in H_(2)O_(2)in the lung and bronchoalveolar lavage fluid(BALF)of mice with pulmonary fibrosis.Furthermore,the sensor could also detect H_(2)O_(2)in activated hepatic stellate cells and the liver of carbon tetrachloride(CCl_(4))-induced liver fibrosis.Moreover,the alterations in H_(2)O_(2)detected by the sensor were consistent with nicotinamide adenine dinucleotide phosphate oxidase 4(NOX4)protein expression and the staining results of pathological sections.Taken together,these results highlight the use of H_(2)O_(2)sensors for the rapid detection of fibrosis and facilitate the rapid evaluation of antifibrotic drug candidates.
基金
supported by the National Natural Science Foundation of Sichuan Province(Nos.2022NSFSC1465,2023NSFSC0525)
Post-Doctor Research Project,West China Hospital,Sichuan University(No.2021HXBH086)
the Sichuan University postdoctoral interdisciplinary Innovation Fund(No.10822041A2118)
Full-Time Postdoctoral Research Fund of Sichuan University(No.20826041F4134)。