期刊文献+

基于智能算法的火电机组变负荷控制策略优化 被引量:2

Optimization of Variable Load Control Strategy for Thermal Power Units Based on Intelligent Algorithms
下载PDF
导出
摘要 现有火电机组的AGC(automatic generation control,自动发电控制)系统存在控制精度低、响应速度慢等问题,为满足电力保供要求,引入人工智能算法对火电机组变负荷控制逻辑进行升级优化。对行业内已开展应用的神经网络、模糊控制、智能优化算法、专家系统、模型预测控制等各类智能算法进行特性总结与适用性分析,在此基础上提出利用线性自回归模型修正锅炉、汽轮机主控逻辑的方案,并在某350 MW超临界燃煤机组上进行10%额定出力的变负荷仿真实验,结果表明,智能算法优化后的控制逻辑有利于机组缩短响应时间,减少超调量,提高AGC系统的调节品质。 The existing AGC(automatic generation control)system of thermal power units has problems such as low control accuracy and slow response speed.In order to meet the requirements of power supply guarantee,artificial intelligence algorithms are introduced to upgrade and optimize the variable load control logic of thermal power units.This paper summarizes the characteristics and analyzes the applicability of various intelligent algorithms that have been applied in the industry,such as neural network,fuzzy control,intelligent optimization algorithm,expert system,model predictive control,etc.On this basis,a scheme to modify the main control logic of boiler and turbine by using linear autoregressive model is proposed.The simulation test of 10%rated output of a 350 MW supercritical coal-fired unit is carried out.The results show that the control logic optimized by the intelligent algorithm is beneficial to shorten the response time of the unit,reduce the overshoot and improve the regulation quality of the AGC system.
作者 刘晓莎 刘林林 寿德武 LIU Xiaosha;LIU Linlin;SHOU Dewu(Shaanxi Polytechnic Institute,Xianyang,Shaanxi,China 712000;Xianyang Key Laboratory of New Energy and Microgrid System,Xianyang,Shaanxi,China 712000;Baihe Power Supply Branch of State Grid Shaanxi Electric Power Co.,Ltd.,Baihe,Shaanxi,China 725800;East Asia Power(Wuxi)Co.,Ltd.,Wuxi,Jiangsu,China 214196)
出处 《湖南邮电职业技术学院学报》 2024年第1期36-40,共5页 Journal of Hunan Post and Telecommunication College
基金 2023年度陕西工业职业技术学院科研项目“基于模糊控制的再热蒸汽温度控制系统研究”(项目编号:ZK2023YKYB-003)。
关键词 智能算法 控制逻辑 优化升级 变负荷 intelligent algorithms control logic optimization and upgrading variable load
  • 相关文献

参考文献12

二级参考文献62

共引文献22

同被引文献17

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部