摘要
目的基于文献计量学探讨人工智能(AI)在代谢相关脂肪性肝病(MAFLD)中的应用及展望。方法检索Web of Science核心合集数据库(WoSCC)中AI技术应用于MAFLD中的相关文献。运用CiteSpace、VOSviewer、R包“bibliometrix”以及文献计量在线分析平台分析该领域的应用热点及趋势。结果共获得303篇符合要求的文献。从2017年开始,该领域论文数量呈爆发式增长。美国在AI应用于MAFLD领域的研究中处于领先地位,并且是参与国际合作最频繁的国家。加州大学圣地亚哥分校是发文量最高的机构。LOOMBA R是发文量最高的作者,发表了14篇文章。共被引关键词聚类标签显示了10个主要聚类:digital image analysis,machine learning,computer-aided diagnosis,fibrosis stage,automated quantitative analysis,metaproteomics,non-invasive diagnosis,ultrasonography,electronic health records,knowledge representation。AI在MAFLD领域的相关研究目前主要集中在MAFLD的诊断、鉴别诊断以及分期中的应用。图像识别与分析、智能辅助诊断、AI算法和监测疾病进展将是AI在MAFLD领域的重要研究方向。结论AI应用于MAFLD的相关研究呈指数级增长,考虑到该领域的巨大潜力和临床应用前景,AI在MAFLD相关领域的应用仍将是未来的研究热点。
Objective To explore the application and prospects of artificial intelligence(AI)in metabolic associated fatty liver disease(MAFLD)based on bibliometrics.Methods Relevant literature on the application of AI technology in MAFLD was retrieved from the Web of Science Core Collection(WoSCC)database.Bibliometric analysis was conducted using CiteSpace,VOSviewer,R package"bibliometrix",and online bibliometric analysis was platformed to identify hotspots and trends in this field.Results A total of 303 eligible articles were obtained.Since 2017,the number of papers in this field had experienced explosive growth.The United States was leading the research on the application of AI in MAFLD and was the most frequent participant in international cooperation.San Diego of University of California was the institution with the highest number of publications.Rohit Loomba was the author with the highest number of publications,having published 14 articles.The co-cited keyword clustering labels revealed 10 major clusters:digital image analysis,machine learning,computer-aided diagnosis,fibrosis stage,automated quantitative analysis,metaproteomics,non-invasive diagnosis,ultrasonography,electronic health records,and knowledge representation.Current research on the application of AI in MAFLD mainly focused on the diagnosis,differential diagnosis,and staging of MAFLD.Image recognition and analysis,intelligent assisted diagnosis,AI algorithms,and monitoring disease progression will be important research directions for AI in MAFLD.Conclusion Research on the application of AI in MAFLD is experiencing exponential growth.Given enormous potential and clinical application prospects of this field,the application of AI in MAFLD-related areas will remain a research hotspot in the future.
作者
李安琪
赵佩然
赵玉强
王锐
杨婧
LI Anqi;ZHAO Peiran;ZHAO Yuqiang;WANG Rui;YANG Jing(School of Basic Medicine of Heilongjiang University of Chinese Medicine,Harbin,Heilongjiang,150040)
出处
《实用临床医药杂志》
CAS
2024年第5期1-9,16,共10页
Journal of Clinical Medicine in Practice
基金
国家自然科学基金项目(81603418)
黑龙江省优秀青年人才项目(2020YQ05)。
关键词
文献计量学
人工智能
代谢相关脂肪性肝病
智能辅助诊断
机器学习
深度学习
bibliometrics
artificial intelligence
metabolic associated fatty liver disease
intelligent assisted diagnosis
machine learning
deep learning