期刊文献+

线、体能量密度对激光选区熔化AlSi10Mg合金致密度及缺陷的影响

Effect of Linear and Volumetric Energy Density on Relative Density and Defects of AlSi10Mg Alloy Prepared by Selective Laser Melting
原文传递
导出
摘要 基于激光选区熔化技术制备AlSi10Mg合金试样,探究线、体能量密度对致密度及孔隙缺陷的影响规律,并通过缺陷微观形貌及熔池特征分析,揭示了缺陷形成机理。结果表明,相同线或体能量密度不同样品的致密度存在明显的差异性,采用线、体能量密度协同分析,不同样品的致密度差值显著降低。当线能量密度为0.12~0.28J·mm^(-1),且体能量密度为30~70J·mm^(-3)时,样品致密度可达99%以上。此外,当线、体能量密度均较低时,形成孔隙形状不规则的未熔合缺陷,位于相邻熔池间且可贯通多个扫描层;当线能量密度较高时,形成孔隙尺寸较大的圆形匙孔缺陷,位于熔池底部。 In this paper,the AlSi10Mg alloy samples were prepared based on the selective laser melting(SLM)technique,and the effect of linear energy density and volumetric energy density on relative density and pore defects were investigated.The formation mechanism of defects were revealed by analyzing of defect microstructure and melt pool characteristics.The results show that the relative density of different samples is obviously different for the same linear/volumetric energy density,and the relative density difference among different samples is significantly reduced by using linear energy density cooperating with volume energy density.The relative density of over 99%is obtained when linear energy density is from 0.12to 0.28J/mm and volume energy density is from 30to 70J/mm^(3).In addition,low linear and volumetric energy densities result in irregular lackof-fusion defects that traverse multiple melt pool layers,while high linear energy density leads to the formation of circular keyhole defects with large pore sizes located at the base of the melt pool.
作者 刘伟军 丁治国 王慧儒 卞宏友 张凯 Liu Weijun;Ding Zhiguo;Wang Huiru;Bian Hongyou;Zhang Kai(School of Mechanical Engineering,Shenyang University of Technology,Shenyang110870,Liaoning,China)
出处 《应用激光》 CSCD 北大核心 2024年第2期10-18,共9页 Applied Laser
基金 国家科技重大专项(2019-VII-0004-0144) 辽宁省高校创新团队(20211402) 辽宁“百千万人才工程”资助项目(LNBQW 2020B0050)。
关键词 激光选区熔化 AlSi10Mg合金 能量密度 致密度 缺陷 selective laser melting AlSi10Mg alloy energy density relative density defect
  • 相关文献

参考文献5

二级参考文献61

  • 1李瑞迪,魏青松,刘锦辉,史玉升,袁铁锤.选择性激光熔化成形关键基础问题的研究进展[J].航空制造技术,2012,55(5):26-31. 被引量:25
  • 2顾冬冬,沈以赴.基于选区激光熔化的金属零件快速成形现状与技术展望[J].航空制造技术,2012,55(8):32-37. 被引量:53
  • 3Zhifeng XU,Jian ZHANG,Haizhong ZHENG,Changchun CAI,Yinhui HUANG.Morphology and Mechanical Properties of PS/Al_2O_3 Nanocomposites Based on Selective Laser Sintering[J].Journal of Materials Science & Technology,2005,21(6):866-870. 被引量:6
  • 4胥光申,张锡强,朱金雄,赵万华,卢秉恒.光固化快速成形精度影响因子的优化[J].中国机械工程,2006,17(6):559-562. 被引量:7
  • 5Guan K, Wang Z M, Gao M, et al: Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Materials & Design, 2013, 50: 581-586.
  • 6Averyanova M, Cicala E, Bertrand P, et al: Experimental design approach to optimize selective laser melting of martensitic 17-4 PH powder: Part I- single laser tracks and first layerl[J]. Rapid Prototyping Journal, 2012, 18(1): 28- 37.
  • 7Wang Z M, Guan K, Gao M, et al: The microstructure and mechanical properties of deposited-IN718 by selective laser melting[J]. Journal of Alloys and Compounds, 2012, 513: 518-523.
  • 8Gu D D, Hagedorn Y C, Meiners W, et al: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium[J]. Acta Materialia, 2012, 60(9): 3849-3860.
  • 9Vrancken B, Thijs L, Kruth J P, et al: Heat treatment of Ti6A14V produced by selective laser mehing: Microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185.
  • 10Louvis E, Fox P, Sutcliffe C J. Selective laser melting of aluminium components [J]. Journal of Materials Processing Technology, 2011, 211(2): 275-284.

共引文献175

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部