摘要
中国高速铁路(HSR)规划建设逐渐向地震易发地区延伸,亟需一种及时、准确的灾后地震响应快速预测方法,以实现高速铁路系统运输生命线安全的快速评估。本文提出了一种基于贝叶斯自优化双向长短期记忆(Bi-LSTM)网络的快速预测方法,以经过实验验证的高速铁路轨道-桥梁系统有限元模型地震动响应计算数据为样本,将预测地震响应和有限元计算结果进行比较,验证所提方法的精度和鲁棒性,表明该方法在预测高速铁路桥梁结构的非线性地震反应方面是有效的,且高速铁路轨道-桥梁系统的不同预测位置对预测精度的影响不明显;此外,为了降低神经网络训练数据量需求,提出了一种基于离散小波分解的分层聚类算法,结果表明,基于小波分解的分层聚类方法在保证预测精度的同时,有效地减少了训练地震集的输入数量。
The construction of China’s high-speed railway(HSR)network has reached earthquake-prone regions,necessitating a timely and accurate post-disaster quick prediction approach to ensure the safety of the HSR systems’transportation lifeline.This study proposes a fast prediction method utilizing a Bayesian self-optimized bi-directional long short-term memory(Bi-LSTM)network to develop a fast prediction framework for the seismic response of the HSR track-bridge system.It describes a hierarchical clustering algorithm based on discrete wavelet decomposition.The results indicated that the proposed framework effectively predicts the nonlinear seismic response of HSR bridge structures.The model also showed the performance of the work migrate ability and robustness.In addition,the impact of different prediction locations on the HSR track-bridge system is minimal.The hierarchical clustering method based on wavelet decomposition can effectively reduce the number of inputs to the seismic training dataset while ensuring prediction accuracy.
作者
彭康
蒋丽忠
周旺保
余建
向平
吴凌旭
PENG Kang;JIANG Li-zhong;ZHOU Wang-bao;YU Jian;XIANG Ping;WU Ling-xu(National Engineering Research Center of High-speed Railway Construction Technology,Central South University,Changsha 410075,China)
基金
Projects(52078487,U1934207,52178180)supported by the National Natural Science Foundations of China
Projects(2022YFB2302603,2022YFC3004304)supported by the National Key Research and Development Program of China
Project(2022TJ-Y10)supported by the Hunan Province Science and Technology Talent Lifting,China
Project(SKL-IOTSC(UM)-2021-2023)supported by the Science and Technology Development Fund,China
Project(SKL-IoTSC(UM)-2024-2026/ORP/GA08/2023)supported by the State Key Laboratory of Internet of Things for Smart City(University of Macao),China。