摘要
Carbon-supported noble-metal-free single-atom catalysts(SACs)have aroused widespread interest due to their green chemistry aspects and excellent performances.Herein,we propose a“ligand regulation strategy”and achieve the successful fabrication of bifunctional SAC/MOF(MOF=metal-organic framework)nanocomposite(abbreviated NiSA/ZIF-300;ZIF=ZIF-8)with exceptional catalytic performance and robustness.The designed NiSA/ZIF-300 has a planar interfacial structure with the Ni atom,involving one S and three N atoms bonded to Ni(Ⅱ),fabricated by controllable pyrolysis of volatile Ni-S fragments.For CO_(2) cycloaddition to styrene epoxide,NiSA/ZIF-300 exhibits ultrahigh activity(turnover number(TON)=1.18×105;turnover frequency(TOF)=9830 molSC·mol_(Ni)^(-1)·h^(-1);SC=styrene carbonate)and durability at 70℃ under 1 atm CO_(2) pressure,which is much superior to Ni complex/ZIF,NiNP/ZIF-300,and most reported catalysts.This study offers a simple method of bifunctional SAC/MOF nanocomposite fabrication and usage,and provides guidance for the precise design of additional original SACs with unique catalytic properties.
基金
support by the National Natural Science Foundation of China(Nos.21972001,21871001)
the Natural Science Foundation of Anhui Province(No.2008085MB37)
the Anhui University,the University of Bordeaux,and the Centre National de la Recherche Scientifique(CNRS).