期刊文献+

Transient synthesis of carbon-supported high-entropy alloy sulfide nanoparticles via flash Joule heating for efficient electrocatalytic hydrogen evolution 被引量:1

原文传递
导出
摘要 High entropy alloys(HEA)are frequently employed as catalysts in electrocatalytic hydrogen evolution.However,the traditional high entropy alloy synthesis methods are time-consuming,energy-intensive,and environmentally polluting,which limits their application in the hydrogen evolution reaction(HER).This study leveraged the capabilities of flash Joule heating(FJH)to synthesize carbon-supported high-entropy alloy sulfide nanoparticles(CC-S-HEA)on carbon cloth(CC)with good self-standing properties within 300 ms.The carbon thermal shock generated by the Joule heating could pyrolyze the sulfur source into gas,resulting in numerous pore structures and defects on CC,forming an S-doped carbon substrate(CC-S).Then the S atoms were used to stably anchor the metal atoms on CC-S to form high-density uniformly dispersed HEA particles.The electrochemical test results demonstrated that CC-S-HEA prepared at 60 V flash voltage had HER performance comparable to Pt/C.The density functional theory(DFT)calculation indicated that the S atoms on CC-S accelerated the electron transfer between the carbon substrate and HEA particles.Moreover,the unique electronic structure of CC-S-HEA was beneficial to H*adsorption and promoted catalytic kinetics.The simplicity and versatility of FJH synthesis are of great significance for optimizing the synthesis of HEA and improving the quality of HEA products,which provides a broad application prospect for the synthesis of nanocatalysts with efficient HER performance.
出处 《Nano Research》 SCIE EI CSCD 2024年第4期3379-3389,共11页 纳米研究(英文版)
基金 supported by Key Research and Development Project of Xuzhou City(No.KC21287) the National Natural Science Foundation of China(No.51974307).
  • 相关文献

参考文献9

二级参考文献57

  • 1Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141 145.
  • 2Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.
  • 3Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.
  • 4Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.
  • 5Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.
  • 6Hou, Y. D.; Laursen, A. B.; Zhang, J. S.; Zhang, G. G.; Zhu, Y. S.; Wang, X. C.; Dahl, S.; Chorkendorff, I. Layered nanojunctions for hydrogen-evolution catalysis. Angew. Chem., Int. Ed. 2013, 52, 3621-3625.
  • 7Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. High-performance electrocatalysis using metallic cobalt pyrite (COS2) micro- and nanostructures. J. Am. Chem. Soc. 2014, 136, 10053-10061.
  • 8Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(11) oxide nanoparticles anchored onto cobalt(IV) diselenidenanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546-8550.
  • 9Chert, W. F.; Muckerman, J. T.; Fujita, E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 2013, 49, 8896-8909.
  • 10Popczun, E. J.; Read, C. G.; Roske, C. W; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427-5430.

共引文献36

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部