摘要
将发动机可测参数作为初始特征,利用人工神经网络技术建立航空发动机压气机盘应力和温度预测的MLP(multilayer perceptron)模型,采用BP(back propagation)神经网络算法进行训练。结果表明:该方法预测结果与传统有限元计算结果吻合较好,相对偏差均在1%以内,判定系数达到0.95以上,方均根误差均在5以内,且计算速度由小时级提升为分秒级,可为后续工程应用提供依据。
Taking the measures parameters of the engine as the initial characteristics,the MLP(multilayer perceptron)model of aero-engine compressor disk stress and temperature prediction was established by using artificial neural network technology,and BP(back propagation)neural network algorithm was used for training.The results showed that the prediction results of this method were in good agreement with the traditional finite element calculation results.The relative deviations were all within 1%,the determination coefficients were above 0.95,and the root mean squared error was within 5.Moreover,the calculation speed increased from hour level to minute second level,providing a basis for subsequent engineering applications.
作者
王学民
徐敬沛
何云
WANG Xuemin;XU Jingpei;HE Yun(Sichuan Gas Turbine Establishment,Aero Engine Corporation of China,Chengdu 610500,China)
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2024年第4期205-214,共10页
Journal of Aerospace Power
基金
航空动力基础研究项目。
关键词
压气机轮盘
神经网络
多层感知机
应力
温度
寿命管理
compressor disk
neural network
multilayer perceptron
stress
temperature
life management