摘要
海洋试验图像通常受到海洋气象条件、海水光照折射和海洋深度等因素的影响,导致在海洋中采集的图像包含严重的噪声。为了提高海洋试验图像的清晰度和降噪性,提出一种基于离散剪切波与优化深度卷积神经网络相结合的海洋试验图像降噪方法。采用离散剪切波变换分解海洋试验图像,能有效从图像中提取不同方向和频率的特征。利用优化深度卷积神经网络强大的图像特征提取能力,经网络模型训练后,能获取图像中的关键特征,达到降噪的目的。在验证实验中,所提方法与传统图像降噪方法相比,能有效保留图像的纹理和细节特性,获得了较好的降噪效果,有助于提高海洋试验图像的清晰度和降噪性。
Marine test images are often affected by factors such as marine meteorological conditions,seawater light refraction,and ocean depth,resulting in severe noise in the images collected in the ocean.In order to improve the clarity and denoising performance of marine test images,this paper proposes a marine test image denoising method based on discrete shearlet transform combined with an optimized deep convolutional neural network.The discrete shearlet transform is used to decompose the marine test image,which can effectively extract features of different directions and frequencies from the image.By utilizing the powerful feature extraction ability of the optimized deep convolutional neural network,after training the network model,key features in the image can be obtained,thus achieving the purpose of denoising.In the verification experiment,compared with traditional image denoising methods,the proposed method can effectively retain the texture and detail characteristics of the image,achieve good denoising effect,and improve the clarity and denoising performance of marine test images.
作者
白华军
李荣昌
司洁戈
张义
张景熙
BAI Huajun;LI Rongchang;SI Jiege;ZHANG Yi;ZHANG Jingxi(The 3rd Research Institute of China Electronics Technology Group Corporation,Beijing 100015,China)
出处
《电声技术》
2024年第1期146-152,共7页
Audio Engineering
关键词
离散剪切波变换
降噪方法
深度卷积神经网络
海洋试验
discrete shearlet transform
denoising methods
deep convolutional neural networks
ocean experiments