摘要
针对社交网络中多属性群体决策问题中评价信息类型不一致的情况,提出一种新的基于边界信用的社交网络多属性群体共识评价方法。研究将不确定的语言信息转换成可以计算的矩阵,引用信任与不信任作为参与者建立社交网络的变量,使用多种衡量手段计量共识度,使用最小调整反馈机制得出超过阈值的评价矩阵共识度。最后通过算例验证所提方法的有效性和合理性。算例结果表明,该方法不仅能够有效地将参与者间的信任结合到多属性评价中,而且能够以最小调整成本达到群体共识,使得决策结果更加客观,具有应用价值。
A new social network multi-attribute group consensus evaluation method based on boundary credit is proposed to address the issue of inconsistent evaluation information types in multi-attribute group decisionmaking problems in social networks.The study converts uncertain linguistic information into a computable matrix,cites trust and distrust as variables for participants to establish social networks,uses multiple measurement methods to measure consensus,and uses a minimum adjustment feedback mechanism to obtain consensus in the evaluation matrix that exceeds the threshold.Finally,the effectiveness and rationality of the proposed method were verified through numerical examples.The calculation results show that this method can not only effectively integrate trust among participants into multi-attribute evaluation,but also achieve group consensus with the minimum adjustment cost,making the decision results more objective and has practical value.
作者
何奇兵
HE Qibing(School of Information Technology of Xinyang Aviation Vocational College of Henan of China,Xinyang Henan 464000)
出处
《软件》
2024年第2期77-82,158,共7页
Software
关键词
不确定语言变量
多属性决策
信任
群体共识
社交网络分析
uncertain language variables
multi attribute decision-making
trust
group consensus
social network analysis