期刊文献+

脑电信号多特征融合与卷积神经网络算法研究 被引量:1

Algorithm Research Based on Multi-Feature Fusion of EEG Signals with Convolutional Neural Networks
下载PDF
导出
摘要 针对脑电信号(electroencephalogram,EEG)运动想象中单一特征无法多维表征信号中的信息导致的分类准确率不高的问题,提出一种基于样本熵和共空间模式特征融合的特征提取算法。算法先对原始脑电信号进行小波包分解,从中选择包含μ和β节律的分量进行重构,然后分别提取重构信号的样本熵和CSP(common spatial pattern,CSP)特征,将两者融合组成新的特征向量,使用所设计的一维卷积神经网络对其进行识别获得分类结果。所提方法在2003年BCI Dataset III中获得了91.66%的分类准确率,在2008年BCI Dataset A中获得了85.29%的平均分类准确率。与近年来文献中提出的多特征融合算法相比,准确率提高了7.96个百分点。 In order to address the issue of low classification accuracy in motor imagery of electroencephalogram(EEG)signals,a feature extraction algorithm based on sample entropy and common spatial pattern(CSP)feature fusion has been proposed.The algorithm initially performs wavelet packet decomposition on the raw EEG signal,selecting the compo-nents containingμandβrhythms for reconstruction.Subsequently,the sample entropy and CSP features of the recon-structed signal are separately extracted.These two features are then fused to create a new feature vector which is recog-nized using a one-dimensional convolutional neural network designs in the paper,to obtain the classification result.The proposes method achieves a classification accuracy of 91.66%on the BCI Dataset III in 2003 and an average classification accuracy of 85.29%on the BCI Dataset A in 2008.Comparing with multi-feature fusion algorithms proposed in recent literature,the accuracy is improved by 7.96 percentage points.
作者 宋世林 张学军 SONG Shilin;ZHANG Xuejun(College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing 210023,China;National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《计算机工程与应用》 CSCD 北大核心 2024年第8期148-155,共8页 Computer Engineering and Applications
基金 国家自然科学基金(61977039)。
关键词 脑电信号 运动想象 小波包重构 样本熵 共空间模式 卷积神经网络 electroencephalogram motor imagery wavelet packet transform sample entropy common spatial pattern convolution neural network
  • 相关文献

参考文献4

二级参考文献20

  • 1刘慧,和卫星,陈晓平.生物时间序列的近似熵和样本熵方法比较[J].仪器仪表学报,2004,25(z1):806-807. 被引量:29
  • 2刘建平,贺太纲,郑崇勋,黄远桂.EEG复杂性测度用于大脑负荷状态的研究[J].生物医学工程学杂志,1997,14(1):33-37. 被引量:16
  • 3Ebrahimi T,Vesin J M.Brain-computer interface in multimedia communication[J].IEEE Signal Processing Magazine,2003,20(1):14-24.
  • 4Phillips H.Controlling pain by watching your brain[J].New Scientist,2004,182(2445):9.
  • 5McFarland D J,McCane L M.EEG-based communication and control:short-term role of feedback[J].IEEE Transactions on Rehabilitation Engineering,1998,6(3):7-11.
  • 6Richman J S,Moorman J R.Physiologica time-series analysis using approximate entropy and sample entropy[J].Am J Physio:Heart Circ Physio,2000,278(6):2039-2049.
  • 7Abasolol D,Hornerol R,Espino P,et al.Entropy analysis of the EEG background activity in Alzheimer's disease patients[J].Physiological Measurement,2006,27(3):241-253.
  • 8Vapnik V N.Statistical learning theory[M].New York:John Wiley and Sons Inc.,1998.
  • 9Pincus S M,Goldberger A L.Physiological time-series analysis:what does regularity quantify?[J].Am J Physiol:Heart Circ Physiol,1994,266(4):643-656.
  • 10LaBerge D.Attention,awareness,and triangular circuit[J].Consciousness and Cognition,1997,6 (3):149-181.

共引文献47

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部