摘要
针对当前航空航天科技科普视频个性化推荐准确率较低的问题,提出一种航空航天科技科普视频资源个性化推荐方法。构建二值函数结合用户科普视频行为数据,实现用户航空航天科技科普兴趣挖掘;利用Ffmpeg提取视频帧,使用关键帧算法,划分航空航天科技科普视频资源类别;应用协同过滤算法与优化矩阵分解模型,设计科普视频资源个性化推荐算法。构建实验环节,实验结果表明:此方法的视频类型划分准确性较高,且可对用户兴趣进行高精度分析,提升科技科普视频资源个性化推荐准确率。
Aiming at the problem of low accuracy of personalized recommendation of popular science video in aerospace science and technology,a personalized recommendation method of popular science video resources in aerospace science and technology is proposed.This paper constructs a binary function combined with the user behavior data of popular science video to realize the user’s interest mining of popular science video of aerospace science and technology.It uses Ffmpeg to extract video frames,and uses the key frame algorithm to divide the categories of popular science video resources of aerospace science and technology.It applies the collaborative filtering algorithm and the optimization matrix decomposition model to design the personalized recommendation algorithm of popular science video resources.The experimental results show that this method has high accuracy of video classification,and can analyze the user’s interest with high precision,and improve the accuracy of personalized recommendation of science and technology popular science video resources.
作者
张晓帆
张传秋
Zhang Xiaofan;Zhang Chuanqiu(China Aerospace Science and Technology International Exchange Center,Beijing 100048,China)
出处
《兵工自动化》
北大核心
2024年第3期21-25,共5页
Ordnance Industry Automation
关键词
航空航天科技科普视频
用户兴趣
个性化推荐
个性化服务
聚类挖掘
关键帧提取
popular science video of aerospace science and technology
user interest
personalized recommendation
personalized service
cluster mining
key frame extraction