期刊文献+

一种茶叶病害的深度学习检测算法

A Deep Learning Detection Algorithm for Tea Diseases
下载PDF
导出
摘要 提出了一种改进的基于深度学习的茶叶病害目标检测算法。该方法在网络模型中添加坐标注意力机制,使模型细化特征,更加关注茶叶病害信息,从而抑制树枝、杂草等一些背景因素的干扰;选用CIoU作为模型的损失函数以提高定位能力;同时,通过聚类的方法对数据集中的目标边框进行重新优化,以获得更精准的先验框;并建立包含6种病害的茶叶病害数据集,解决了病害图像数据匮乏的问题。与其他算法对比实验结果表明,所提出的算法在多个指标上均有较好的表现,可为茶叶病害智能化诊断提供高效的解决方案。 An improved deep learning algorithm based tea disease target detection was proposed.A coordinate attention mechanism was incorporated into the network,which could enable the model to refine features and focus more on disease information,thereby suppress the interference from background factors such as branches and weeds.CIoU was selected as the loss function of the model to improve the localization capabilities.Simultaneously,the target bounding boxes in the dataset was optimized through clustering techniques to obtain more accurate prior boxes.To address the issue of insufficient disease image data,a tea diseases dataset comprising six disease types was established.Experimental results showed that,compared to other algorithms,the presented method could exhibit superior performance across multiple metrics,and provide an efficient solution for the intelligent diagnosis of tea diseases.
作者 孙艳歌 吴飞 周棋赢 SUN Yange;WU Fei;ZHOU Qiying(College of Computer&Information Technology,Xinyang Normal University,Xinyang 464000,China;Henan Key Laboratory of Tea Plant Biology,Xinyang Normal University,Xinyang 464000,China)
出处 《信阳师范学院学报(自然科学版)》 CAS 2024年第2期246-251,共6页 Journal of Xinyang Normal University(Natural Science Edition)
基金 国家自然科学基金项目(62062004) 河南省自然科学基金项目(222300420274) 信阳师范学院研究生科研创新基金项目(2021KYJJ56)。
关键词 茶叶 病害检测 深度学习 目标检测 注意力机制 tea disease detection deep learning object detection attention mechanisms
  • 相关文献

参考文献10

二级参考文献110

共引文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部