期刊文献+

Ferroelectric-to-relaxor transition and ultrahigh electrostrictive effect in Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-PbTiO_(3)ferroelectrics ceramics

原文传递
导出
摘要 Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第34期75-84,共10页 材料科学技术(英文版)
基金 the National Natural Science Foundation of China(Grant No.52261135548) the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22) the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and 2021YFB3800602) Russian Science Foundation(Project No.23-42-00116) the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)which is supported by the Ministry of Science and Higher Education RF(Project No.075-15-2021-677)was used. The SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi’an,China.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部