期刊文献+

Biodegradable porous Zn-1Mg-3βTCP scaffold for bone defect repair:In vitro and in vivo evaluation

原文传递
导出
摘要 Zn-based materials are promising as bone repair materials,but their poor mechanical property and bioactivity as well as low degradation rate render the potential application.Rational structural and material design can address the concerns.In this study,porous Zn-1 wt.%Mg-3 vol.%β-TCP scaffolds with 40%and 60%preset porosities were fabricated via heating-press sintering using NaCl particles as space holders,and their mechanical properties,in vitro degradation behavior,cytotoxicity and in vivo osteogenic activities were evaluated.The results showed that the actual porosities of the scaffolds were 22%and 50%.Mg exists in the form of Zn 2 Mg and Zn 11 Mg 2,whileβ-TCP evenly distributed in the matrix.The compressive yield strength of scaffolds ranges from approximately 58.46 to 71.04 MPa,which is close to that of cancellous bone.The in vitro degradation tests showed that the corrosion rate of the scaffolds was in the range of about 2.73-4.28 mm y^(-1).Moreover,the scaffolds not only provided great space for osteoblasts adhesion and proliferation in vitro but also possessed favorable degradability and osteogenic activity in vivo.The porous Zn-1 wt.%Mg-3 vol.%β-TCP scaffolds manifest reliable mechanical properties,desirable degradability,and osteogenic activity,which are promising as next-generation bone repair materials.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第31期189-202,共14页 材料科学技术(英文版)
基金 supported by the Key Research and Development Program of Shanxi Province(No.202102130501007) the Central Leading Science and Technology Development Foundation of Shanxi Province(No.YDZJSX2021A019) the Natural Science Foundation of Shanxi Province(Nos.202103021223102 and 202203021211173) Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Nos.2021SX-AT008 and 2021SX-AT009).
  • 相关文献

参考文献2

二级参考文献103

  • 1M.E Staiger, A.M. Pietak, J. Huadmai, G. Dias, Biomaterials 27 (2006) 1728-1734.
  • 2R. Waksman, J. Interv. Card. 19 (2006) 414-421.
  • 3B. Liu, Y.E Zheng, Acta Biomater. 7 (2011) 1407-1420.
  • 4H. Hermawan, D. Dub6, D. Mantovani, Acta Biomater. 6 (2010) 1693 - 1697.
  • 5M. Schinhammer, A.C. Hinzi, J.E L6ffler, EJ. Uggowitzer, Acta Biomater. 6 (2010) 1705-1713.
  • 6F. Witte, J. Fischer, J. Nellesen, H.A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen, Biomaterials 27 (2006) 1013-1018.
  • 7X. Gu, Y. Zheng, Y. Cheng, S. Zhong, T. Xi, Biomaterials 30 (2009) 484-498.
  • 8G. Song, S. Song, Adv. Eng. Mater. 9 (2007) 298-302.
  • 9G. Milazzo, S. Caroli, R.D. Braun, J. Electrochem. Soc. 125 (1978) 260C-261C.
  • 10J.L. Yang, H.C. Chen, Chemosphere 53 (2003) 877-882.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部