期刊文献+

Ambient-condition strategy for rapid mass production of crystalline gallium oxide nanoarchitectures toward device application

原文传递
导出
摘要 Currently,the synthesis of nanostructures still encounters two grand challenges:one is the often-required high temperatures and/or high pressures,and the other is the scalable fabrication.Here,to break through such bottlenecks,we demonstrate an ambient-condition strategy for rapid mass production of fourthgeneration semiconductor Ga_(2)O_(3)nanoarchitectures assembled by single-crystalline nanosheets in a controlled manner based on sonochemistry.Their growth is fundamentally determined by the introduced ethanediamine in rationally designed source materials,which could not only protect the metal Ga against reacting with H_(2)O into GaOOH,but facilitate the reaction of Ga with OH·radicals for target crystalline Ga_(2)O_(3)nanostructures.As a proof of concept for applications,the as-fabricated Ga_(2)O_(3)nanoarchitectures exhibit superb performances for electromagnetic wave absorption with a reflection loss value of 52.2 dB at 8.1 GHz,and ammonia sensing with high sensitivity and selectivity at room temperature,representing their bright future to be commercially applied in modern devices.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第32期150-157,共8页 材料科学技术(英文版)
基金 Top Talent Project of Ningbo Municipal Government,National Natural Science Foundation of China(No.51972178)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部