摘要
半导体质量检测数据具有的“相关性、冗余性、不平衡性”等特点,导致传统的分类算法效率较低,为此,提出一种基于特征提取及数据扩充的GA-LightGBM(genetic algorithm-light gradient boosting machine)质量检测方法。通过结合主成分分析(principal component analysis,PCA)、合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)、遗传算法和LightGBM这4种方法,实现对产品质量的有效识别。实验结果表明,相较于传统分类算法,提出的方法可以有效提升质量检测的效率。
Semiconductor quality inspection data exhibit characteristics such as correlation,redundancy,and imbalance,which lead to lower efficiency in traditional classification algorithms.To address this challenge,we propose a quality inspection method named GA-LightGBM(genetic algorithm-light gradient boosting machine)that leverages feature extraction and data augmentation techniques.This approach combines principal component analysis(PCA),synthetic minority oversampling technique(SMOTE),genetic algorithm,and LightGBM.Experimental results demonstrate that,compared to traditional classification algorithms,the proposed method significantly improves the efficiency of quality inspection.
作者
程云飞
周丽芳
赵波
谭佳伟
王淑影
CHENG Yunfei;ZHOU Lifang;ZHAO Bo;TAN Jiawei;WANG Shuying(School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,P.R.China)
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2024年第2期351-356,共6页
Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金
吉林省重大科技专项(20210301038GX,20220301031GX)
吉林省科技厅重点研发项目(20230204078YY)。
关键词
质量检测
主成分分析
合成少数类过采样技术
GA-LightGBM
quality inspection
principal component analysis
synthetic minority oversampling technique
genetic algorithm-light gradient boosting machine