期刊文献+

Surficial modification enabling planar Al growth toward dendrite-free metal anodes for rechargeable aluminum batteries

原文传递
导出
摘要 Al metal possesses ultrahigh theoretical volumetric capacity of 8,040 m Ah cm^(-3),and gravimetric capacity of 2,980 m Ah g^(-1),and thus is highly attractive for electrochemical energy storage.However,it suffers from several issues,such as the dendrite formation,during Al stripping-deposition cycling,which has been verified to account for the short circuit and limited cyclic performance.Herein,we use a facile and applicable method to in-situ reconstruct the Al anode surface with F-Al-O chemical bonds,which could preferentially induce the planar growth of Al along the interface plane,thus leading to the dendrite-free morphology evolution during the cycling.Benefiting from F-Al-O chemical bonds on the surface of Al anodes,long lifespan of symmetric cells can be realized even under 1 m A cm^(-2)and 1 m Ah cm^(-2).Coupling the F-Al anode with graphite-based cathodes,high-voltage dual-ion Al metal batteries can be achieved with long-term cycle stability up to 1,200 cycles(at 0.5 m A cm^(-2)),surpassing the counterparts using pristine Al metal anode.Furthermore,the effectiveness of this surficial modification strategy is also elucidated with the aid of theoretical calculation.This work provides novel insights on low-cost and facile strategies against the Al dendrite growth in aluminum batteries.
出处 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第4期1341-1351,共11页 中国科学(化学英文版)
基金 supported by the National Natural Science Foundation of China(22075028) the Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD202108005)。
  • 相关文献

参考文献11

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部