期刊文献+

基于极限特征值之差的改进频谱感知算法

Improved Spectrum Sensing Algorithm Based on the Difference of Limit Eigenvalues
下载PDF
导出
摘要 基于取样协方差矩阵的最大和最小特征值之差的频谱感知算法,从提高感知判决门限的设置准确度出发,利用Wishart随机矩阵极限特征值分布的最新成果,设计出了一种新的判决门限计算方法.仿真实验结果表明,相对于现有的频谱感知算法,新算法的判决门限计算更加准确,在改善判决结果可靠性的同时,有效地提升了有限样本数量条件下算法的检测性能. Based on the difference between the maximum and minimum eigenvalues(DMME)of the sample covariance matrix,to improve the setting accuracy of sensing decision threshold,a new method is proposed to calculate the threshold by using the latest results of limiting eigenvalue distribution of Wishart matrix.Compared with the traditional DMME algorithm,the decision threshold setting of the proposed algorithm is more accurate.While improving the reliability of decision results,it improves the detection performance of the algorithm with limited number of samples.Both the theoretical analysis and simulation results verify the effectiveness of the proposed DMME algorithm.
作者 田堃 谭哲文 谭宇豪 雷可君 杨喜 TIAN Kun;TAN Zhewen;TAN Yuhao;LEI Kejun;YANG Xi(College of Physics and Electromechanical Engineering,Jishou University,Jishou 416000,Hunan China;College of Information Science and Engineering,Jishou University,Jishou 416000,Hunan China)
出处 《吉首大学学报(自然科学版)》 CAS 2024年第2期35-39,44,共6页 Journal of Jishou University(Natural Sciences Edition)
基金 国家自然科学基金资助项目(61861019,62161012) 湖南省教育厅科学研究项目(21A0335) 国家级大学生创新创业训练项目(S202010531009,202110531029) 吉首大学研究生科研项目(JDY20025)。
关键词 认知无线电 频谱感知 Wishart矩阵 极限特征值 Tracy-Widom分布 cognitive radio spectrum sensing Wishart matrix limiting eigenvalues Tracy-Widom distribution
  • 相关文献

参考文献4

二级参考文献54

  • 1Haykin S. Cognitive radio: brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 2Cabric D, Mishra S M, and Brodersen R W. Implementation issues in spectrum sensing for cognitive radios[C]. Proc. of 38th Asilomar Conf. Signals, System, and Computers, Monterey, CA, Nov. 2004: 772-776.
  • 3Digham F, Alouini M, and Simon M. On the energy detection of unknown signals over fading channels[C]. IEEE Int. Conf. Commun., Seattle, Washington, USA, May 2003, Vol. 5: 3575-3579.
  • 4Tang H. Some physical layer issues of wide-band cognitive radio systems[C]. IEEE Int. Symposium on New Frontiers in Dynamic Spectrum Access Networks, Baltimore, Maryland, USA. Nov. 2005: 151-159.
  • 5Sutton P D, Nolan K E, and Doyle L E. Cyclostationary signatures in practical cognitive radio applications[J]. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 13-24.
  • 6Zeng Y and Liang Y C. Maximum-minimum eigenvalue detection for cognitive radio[Cl. The 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. (PIMRC), Athens, Greece, Sep. 2007.
  • 7Penna F and Garello R. Theoretical performance analysis of eigenvalue-based detection, http://arxiv.org/pdf /0907. 1523v2, 2009.9.
  • 8王颖喜,卢光跃.基于空间谱的频谱感知办法[C].第三届全国通信新理论与新技术学术大会,宁波,2009,10.
  • 9Quan z, Cui S, Poor H V, and Sayed A H. Collaborative wideband sensing for cognitive radios[J]. IEEE Signal Processing Magazine, 2008, 25(6): 60-73.
  • 10Sahai A, Hoven N, and Tandra. Some fundamental limits on cognitive radio[C]. Allerton Conf. on Control, Communication, and Computation, Monticello, Oct. 2004. doi=10.1.1.123.5645&zrep.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部