期刊文献+

深度学习在儿科先天性心脏病超声心动图诊断的研究进展

Research progress of deep learning in echoardiographic diagnosis of pediatric congenital heart disease
下载PDF
导出
摘要 先天性心脏病是导致婴幼儿死亡的主要原因之一,超声心动图是其首选检查方法,但其复杂性、可重复性问题常常影响了筛查和术前的诊断质量,以深度学习为基础的人工智能方法近来已经成为超声心动图诊断先天性心脏病的研究热点,本文就基于深度学习在儿科先天性心脏病超声心动图诊断中的应用进展进行综述。 Congenital heart disease is one of the main causes of infant mortality.Echocardiography is the preferred inspection method,but its complexity and repeatability often affect the quality of screening and preoperative diagnosis.Based on deep learning The artificial intelligence method has recently become a research hotspot in the diagnosis of congenital heart disease by echocardiography.This paper reviews the application progress of deep learning in the diagnosis of pediatric congenital heart disease by echocardiography.
作者 陈训艺 夏焙 陈伟玲 CHEN Xun-yi;XIA Bei;CHEN Wei-ling(Shenzhen Clinical College of Pediatrics,Shantou University School of Medicine,Shenzhen 518038,Guangdong,Chin;不详)
出处 《广东医学》 CAS 2024年第2期260-264,共5页 Guangdong Medical Journal
基金 国家自然科学基金面上项目(62071309) 广东省高水平医院建设医学学科(第二期项目)(深儿医科教[2023]4号) 深圳市科技计划项目(SGDX20201103095802007)。
关键词 深度学习 卷积神经网络 监督学习 半监督学习 超声心动图 心脏病 儿童 deep learning convolutional neural networks supervised learning semi-supervised learning ech-ocardiography heart disease children
  • 相关文献

参考文献4

二级参考文献2

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部