期刊文献+

深度学习在无线通信信号处理中的应用

Deep Learning in Signal Processing for Wireless Communications
下载PDF
导出
摘要 深度学习能够分析大型数据集并学习复杂的模式,从而显著改善干扰管理、资源分配和信号分类等领域的性能。深度学习在无线通信的优化信号检测、推进网络维护和提高无线定位精度方面发挥着至关重要的作用。将先进的机器学习技术集成到无线通信中,不仅提高当前系统的效率和可靠性,还为未来的进步奠定基础,确保无线网络能够适应并满足快速发展的数字环境中日益增长的需求。 Deep learning can analyze large data sets and learn complex patterns,thus significantly improving the performance of interference management,resource allocation and signal classification..Deep learning plays a crucial role in optimizing signal detection,advancing network maintenance and improving wireless positioning accuracy in wireless communications.Integrating advanced machine learning techniques into wireless communications not only improves the efficiency and reliability of current systems,but also lays the groundwork for future advances,ensuring that wireless networks are able to adapt and meet the growing demands of a rapidly evolving digital environment.
作者 郭玉宝 GUO Yubao(China Railway 12th Bureau Group Electrification Engineering Co.,Ltd.,Tianjin 300308,China)
出处 《通信电源技术》 2024年第4期167-169,共3页 Telecom Power Technology
关键词 深度学习 无线通信 通信信号 deep learning wireless communication communication signals
  • 相关文献

参考文献4

二级参考文献12

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部