摘要
流动诱发噪声问题是实际工程领域极为普遍的问题之一,经典的声比拟模型仅以声学压力为参考来评估声场特征分布还远远不够。从声压和声学速度矢量为变量的四维线性波动方程出发,选择包围非线性声源的基尔霍夫面为积分面,并结合对流格林函数,给出均匀运动介质的四维声学频域积分公式,针对静止、旋转单极子源和偶极子源开展数值预测研究。结果表明:本文获得的声压和声学速度分布与解析解吻合,均匀来流情形下静止点源的声场分布表现出典型的对流效应;受均匀来流、点源的自激频率、谐波阶次和旋转频率的共同影响,旋转点源的声场分布则表现出明显的多普勒效应和对流效应。
Flow-induced noise is a common problem in practical engineering.The classical acoustic analogy model is insufficient to evaluate the characteristic distribution of the acoustic field using only acoustic pressure as a refe-rence.Proceeding from a four-dimensional linear wave equation with sound pressure and sound velocity vectors as variables,by choosing the Kirchhoff surfaces to enclose a nonlinear acoustic source as integral surface,and combin-ing with the convective Green's function,the four-dimensional acoustic frequency-domain integral equation for a uniformly moving medium is given.Numerical prediction studies are conducted for stationary,rotating monopole and dipole sources.The results show that the distributions of the sound pressure and acoustic velocity obtained in this paper are in good agreement with the analytical solutions.In contrast to the stationary flow case,the acoustic field distribution of the stationary point source in the uniform flow exhibits a convection effect.On the other hand,the acoustic field distribution of the rotating point source exhibits a strong Doppler effect and convection effect due to the joint influence of the uniform flow,the self-excitation frequency,harmonic order,and rotational frequency of the point source.
作者
郑雯斯
刘秋洪
蔡晋生
ZHENG Wensi;LIU Qiuhong;CAI Jinsheng(School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China)
出处
《航空工程进展》
CSCD
2024年第2期25-34,65,共11页
Advances in Aeronautical Science and Engineering
基金
国家自然科学基金(91952203)。
关键词
波动方程
均匀流
基尔霍夫面
四维声学公式
气动噪声
wave equation
uniform flow
Kirchhoff surfaces
four-dimensional acoustic formulation
aerodynamic noise