期刊文献+

基于密集连接任务对齐的小目标检测算法

Small target detection algorithm based on dense connection task alignment
下载PDF
导出
摘要 针对当前基于卷积神经网络的单阶段目标检测算法(YOLO系列、TOOD等)对高空拍摄场景下的小目标检测存在精度低、漏检、误检等问题,在TOOD算法基础上,提出一种基于密集连接任务对齐的小目标检测算法DATNet。为提升网络的检测能力,采用CSPDarkNet网络提取输入图像特征,通过密集连接的方式融入空洞卷积,添加注意力模块捕捉感兴趣的目标区域,引入DIoU回归损失函数通过任务对齐的检测头来训练模型。实验结果表明,DATNet在VisDrone-DET数据集上相对于TOOD算法平均准确率提升1.7%,为小目标检测场景提供了一种技术方案。 To solve the problems of low accuracy,missed detection and false detection of current single-stage target detection algorithms based on convolutional neural networks(YOLO series,TOOD,etc.)for small target detection in high-altitude shoo-ting scenes,a small target detection algorithm DATNet based on dense connection task alignment was proposed on the basis of TOOD algorithm.To improve the detection ability of the network,CSPDarkNet network was used to extract the input image features,the hole convolution was integrated through dense connection,the attention module was added to capture the target area of interest,and DIoU regression loss function was introduced to train the model through task aligned detection heads.Experimental results show that the average accuracy of DATNet on Visdrone dataset is improved by 1.7%compared with that of TOOD algorithm,which provides a technical solution for small target detection scenarios.
作者 田春欣 陈绪君 郑有凯 TIAN Chun-xin;CHEN Xu-jun;ZHENG You-kai(College of Physical Science and Technology,Central China Normal University,Wuhan 430079,China)
出处 《计算机工程与设计》 北大核心 2024年第4期1032-1038,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(60101204) 湖北省自然科学基金项目(2020CFB474)。
关键词 密集连接 空洞卷积 任务对齐 目标检测 小目标 上下文信息 特征提取 dense connection atrous convolution task alignment target detection small targets context information feature extraction
  • 相关文献

参考文献2

二级参考文献5

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部