期刊文献+

基于SG-LSTM-GRU井下粉尘体积分数预测模型

Prediction of underground dust concentration based on SG-LSTM-GRU model
下载PDF
导出
摘要 粉尘体积分数监测对煤矿粉尘预警起着重要的作用,对其变化预测有利于保障井下安全生产和降低井下矿工职业病风险.针对井下粉尘体积分数预测问题,建立了一种SG-LSTM-GRU预测模型.对监测数据进行预处理,先采用SG滤波方法处理,可以减少时间序列数据中存在的噪声数据,再用最大最小值法进行归一化处理,将得到的数据集划分为90%训练集与10%测试集,通过枚举法不断地实验确定SG滤波器中的参数值以及模型中时间步长,再通过LSTM和GRU模型相结合的方式,既可以通过LSTM层保留数据中较多的特征,又可以通过GRU层提高模型的训练速度,采用均方根误差、平均绝对误差和计算时间进行模型对比评价.研究结果表明,SG-LSTM-GRU模型预测的RMSE为0.256,MAE为0.066,相比其他预测模型该模型预测效果好.因此,采取SG-LSTM-GRU模型对井下粉尘体积分数预测,可以提高数据预测准确性,实现煤矿井下安全生产以及降低矿工尘肺病风险. Dust concentration monitoring plays an important role in coal mine dust warning,and predicting its concentration changes is beneficial for ensuring underground safety production and reducing occupational disease risks for miners.A SG-LSTM-GRU prediction model had been established for the prediction of underground dust concentration.Preprocess the monitoring data by first using the SG filtering method to reduce the presence of noise in the time series data.Used the maximum and minimum value method for normalization.Divide the obtained dataset into a 90%training set and a 10%testing set.Continuously experiment through enumeration to determine the parameter values in the SG filter and the time step size in the model.Combined LSTM and GRU models.Both the LSTM layer could retain more features in the data,and the GRU layer could improve the training speed of the model.Root mean square error,mean absolute error,and calculation time were used for model comparison and evaluation.The research results indicated that the RMSE and MAE predicted by the SG-LSTM-GRU model were 0.256 and 0.066,which was better than other prediction models.Therefore,adopting the SG-LSTM-GRU model for predicting underground dust concentration could improve the accuracy of dust concentration data prediction,achieve safe production in coal mines underground,and reduce the risk of pneumoconiosis among miners.
作者 牛莉莉 杨超宇 NIU Lili;YANG Chaoyu(School of Economics and Management,Anhui University of Science&Technology,Huainan 232001,China)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第2期193-199,共7页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 国家自然科学基金项目(61873004):“多源传感器环境下基于异物特征信息融合的行为识别”.
关键词 机器学习 LSTM GRU Savitzky Golay滤波器 粉尘体积分数预测 安全生产 machine learning LSTM GRU Savitzky Golay filter dust concentration prediction safe production
  • 相关文献

参考文献9

二级参考文献99

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部