期刊文献+

Al-Cu-Li合金热变形特性与位错密度模型构建

Thermal Deformation Characteristics and Dislocation Density Model Construction of Al-Cu-Li Alloy
下载PDF
导出
摘要 通过等温压缩试验,研究热轧态Al-Cu-Li合金在温度为390~480℃、应变速率为0.01~1s^(-1)下的流变行为。基于热压缩流动应力数据构建了峰值应力Arrhenius本构模型,其平均相对误差绝对值(AARE)为4.612%。基于该模型数据,采用K-M模型以及Taylor关系式建立了耦合温度、应变速率、峰值应力、峰值应变的位错密度模型。该模型AARE值为5.926%,具有较高精度,为准确描述Al-Cu-Li合金在热变形过程中的位错密度演变提供参考。 The isothermal compression experiments of hot rolled Al-Cu-Li alloy at temperature range of 390~480℃ and strain rate range of 0.01~1 s^(-1) were carried out on GLEEBLE-3500 isothermal simulator.The peak stress Arrhenius constitutive model was con⁃structed based on the isothermal compression flow stress data,and its average absolute relative error(AARE)is 4.612%.Based on the model,a dislocation density model of coupling temperature,strain rate,peak stress and peak strain was constructed based on K-M model and Taylor relationship,which has an AARE-value of 5.926%,indicating a high prediction precision.This model provides a reference for accurately describing the dislocation density evolution of Al-Cu-Li alloy during thermal deformation.
作者 江余鹏 夏润泽 杜瑞博 龚莉铭 王佳林 JIANG Yupeng;XIA Runze;DU Ruibo;GONG Liming;WANG Jialin(School of Metallurgical and Materials Engineering,Chongqing University of Science and Technology,Chongqing 401331,China)
出处 《铝加工》 CAS 2024年第2期32-37,共6页 Aluminium Fabrication
基金 重庆科技学院研究生创新计划项目(YKJCX2220221)。
关键词 AL-CU-LI合金 热变形 本构模型 位错密度模型 Al-Cu-Li alloy thermal deformation constitutive model dislocation density model
  • 相关文献

参考文献4

二级参考文献107

  • 1张荣霞,曾元松.铝锂合金的发展、工艺特性及国外应用现状[J].航空制造技术,2007,0(z1):438-441. 被引量:17
  • 2Fan Zhang,Yonggang Huang,Keh-Chih Hwang.The indenter tip radius effect in micro- and nanoindentation hardness experiments[J].Acta Mechanica Sinica,2006,22(1):1-8. 被引量:5
  • 3Fleck N.A., Hutchinson J.W.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49:2245-2271 (2001).
  • 4Gao H., Huang Y., Nix W.D.: Modeling plasticity at the micrometer scale. Naturwissenschaften 86:507 (1999).
  • 5Gao H., Huang Y., Nix W.D., Hutchinson J.W.: Mechanism-based strain gradient plasticity, Part Ⅰ: theory. J. Mech. Phys. Solids 47:1239 (1999).
  • 6Huang Y., Gao H., Nix W.D., Hutchinson J.W.: Mechanism-based strain gradient plasticity, Part Ⅱ: analysis. J. Mech. Phys. Solids 48:99-128 (2000).
  • 7Huang Y., Xue Z., Gao H., Nix W.D., Xia Z.C.: A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater Res. 15:1786-1796 (2000).
  • 8Qiu x., Huang Y., Nix W.D., Hwang K.C., Gao H.: Effect of intrinsic lattice resistance in strain gradient plasticity. Acta Mater 49:3949-3958 (2001).
  • 9Qiu x., Huang Y., Wei Y, Gao H., Hwang K.C.: The flow theory of mechanism-based strain gradient plasticity. Mech. Mater 35:245-258 (2003).
  • 10Gurtin M.E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys.Solids 50:5-32 (2002).

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部