期刊文献+

联邦学习在高度数据异构场景下的泛化鲁棒性增强 被引量:1

Enhancing generalization robustness of federated learning inhighly heterogeneous environments
原文传递
导出
摘要 联邦学习(federated learning,FL)是一种以保护客户隐私数据为中心的分布式处理网络,为解决隐私泄露问题提供了前景良好的解决方案.然而,FL的一个主要困境是高度非独立同分布(non-independent and identically distributed,non-IID)的数据会导致全局模型性能很差.尽管相关研究已经探讨了这个问题,但本文发现当面对non-IID数据、不稳定的客户端参与以及深度模型时,现有方案和标准基线FedAvg相比,只有微弱的优势或甚至更差,因此严重阻碍了FL的隐私保护应用价值.为解决这个问题,本文提出了一种对non-IID数据鲁棒的优化方案:FedUp.该方案在保留FL隐私保护特点的前提下,进一步提升了全局模型的泛化鲁棒性.FedUp的核心思路是最小化全局经验损失函数的上限来保证模型具有低的泛化误差.大量仿真实验表明,FedUp显著优于现有方案,并对高度non-IID数据以及不稳定和大规模客户端的参与具有鲁棒性. Federated learning(FL)is a distributed processing network that focuses on protecting client privacy data,providing a promising solution for addressing privacy leakage issues.However,a major quagmire in FL is to train clients'models over signi cantly non-independent and identically distributed(non-IID)data,which would lead to a low-performance global model.Although this issue has been investigated by many previous works,this paper nds that they have little or no performance improvement over the standard baseline FedAvg when facing highly non-IID data,unstable client participation,and deep models,seriously hindering the privacy protection application value of FL.To address this issue,a new solution called FedUp has been proposed.FedUp is a robust optimization solution for non-IID FL that improves the generalization robustness of the global model while retaining the privacy protection characteristics of FL.FedUp minimizes the upper bound of the global empirical loss function to ensure that the models exhibit smaller generalization errors.Simulation experiments show that FedUp achieves signi cant advantages over state-of-the-art methods,and is robust to highly non-IID data as well as unstable and large-cohort client participation.This solution has the potential to improve the performance of FL and make it more practical for privacy protection applications.
作者 万伟 胡胜山 陆建荣 李明慧 周子淇 金海 Wei WAN;Shengshan HU;Jianrong LU;Minghui LI;Ziqi ZHOU;Hai JIN(School of Cyber Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Software Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China;National Engineering Research Center for Big Data Technology and System,Wuhan 430074,China;Services Computing Technology and System Lab,Wuhan 430074,China;Hubei Key Laboratory of Distributed System Security,Wuhan 430074,China;Hubei Engineering Research Center on Big Data Security,Wuhan 430074,China;Cluster and Grid Computing Lab,Wuhan 430074,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2024年第3期566-581,共16页 Scientia Sinica(Informationis)
基金 国家自然科学基金(批准号:U20A20177) 湖北省技术创新计划重点研发专项(批准号:2021BAA032)资助项目。
关键词 分布式网络 联邦学习 异构优化 泛化性 鲁棒性 隐私保护 distributed network federated learning heterogeneous optimization generalization robustness privacy protection
  • 相关文献

参考文献4

二级参考文献10

共引文献28

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部