摘要
针对电力设备红外热故障特征的准确评估需求,提出一种多特征聚合表征的断路器热故障诊断评级方法,并以高压断路器红外图像为实例进行数据测试。首先,在高压断路器红外图像背景分离的基础上,对设备进行精准的区域划分,提取各区域温度信息;然后运用Meanshift和改进区域生长法融合,准确提取故障发热区域面积;其次,设计一种多维聚合表征矩阵,将同一设备发热面积、热点温度、热点温差、发热位置、两相同位温升等特征值聚合为多特征向量矩阵,并运用现场案例数据构建该向量矩阵与高压断路器故障类型、等级、处理意见的关联库;最后对350张高压断路器红外图像的1002组多特征向量进行训练测试。结果表明,该方法提取的多特征向量数据使用GWO SVM分类器测试的Fmeasure和Kappa系数分别为96%和95.43%,能够实现高压断路器设备热故障的全类型诊断评级及精准定位。
In response to the demand for accurate assessment of infrared thermal fault characteristics of power equipment,a multi feature aggregated characterization of circuit breaker thermal fault diagnosis rating method is proposed,and the data test is carried out using infrared images of high voltage circuit breakers as examples.Firstly,on the basis of the background separation of high voltage circuit breaker infrared images,the equipment is accurately divided into regions to extract the temperature information of each region.Secondly,the Mean shift and the improved region growth method are applied to fuse and accurately extract the area of the fault heat emitting region.Then,a multi dimensional aggregated characterization matrix is designed to combine the heat emitting area,hot spot temperature,hot spot temperature difference,heat emitting location,temperature rise of two identical positions of the same equipment and other eigenvalues into a multi feature vector matrix,and the on site case data is adopted to construct a correlation library of this vector matrix and HV circuit breaker fault types,levels and treatment opinions.Finally,1002 sets of multi feature vectors from 350 infrared images of high voltage circuit breakers are trained and tested.The results show that the F measure and Kappa coefficients of the multi feature vector data extracted by this method using GWO SVM classifier test are 96%and 95.43%,respectively,which can achieve the all types of diagnostic rating and accurate localization of thermal faults in high voltage circuit breaker equipment.
作者
桑金海
许志浩
李红斌
康兵
丁贵立
王宗耀
张兴旺
SANG Jin-hai;XU Zhi-hao;LI Hong-bin;KANG Bing;DING Gui-li;WANG Zong-yao;ZHANG Xing-wang(School of Electrical Engineering,Nanchang Institute of Technology,Nanchang 330099,China;School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Jiangxi Bowei New Technology Co,Ltd.,Nanchang 330099,China)
出处
《激光与红外》
CAS
CSCD
北大核心
2024年第3期423-430,共8页
Laser & Infrared