期刊文献+

基于新型超宽带慢波微带传输线的设计

Design of A Novel Ultra-Wideband Slow-Wave Microstrip Transmission Line
下载PDF
导出
摘要 效率高、体积小、质量轻的微波无源器件是5G频段移动通信覆盖的必备设备。文中在研究传统微带型曲折线慢波结构和开路枝节加载基础上,提出基于超宽带慢波微带传输线的设计并进行研究,利用电磁场仿真软件HFSS对该慢波微带传输线进行模拟仿真,仿真结果表明,超宽带慢波结构与普通微带线相比,频带宽,尺寸小,损耗低,成本低,满足5G通信系统的需求。最后通过对加载了所提出的新型慢波微带传输线的小型化U型移相器的实验数据分析表明,该新型慢波微带传输线在基站天线系统中有着广阔的市场应用前景。 Efficient, compact, and lightweight microwave passive devices are essential for mobile communication coverage in the 5Gfrequency band. This paper proposes an ultra-wideband slow-wave microstrip transmission line design based on the traditionalmicrostrip zigzag slow-wave structure and the open circuit branched structure. The proposed slow-wave microstrip transmissionline is analyzed and simulated using the electromagnetic field simulation software HFSS. The simulation results indicate that theproposed ultra-wideband slow-wave structure has a wider bandwidth, smaller size, lower loss, and lower cost than the ordinarymicrostrip line, which meets the requirements of the 5G communication system. Finally, the proposed slow-wave microstriptransmission line is analyzed through experimental data of the miniaturized U-phase shifter. The results demonstrate the promisingmarket application prospects of the proposed slow-wave microstrip transmission line in the base station antenna system.
作者 武瑞楠 杨华 杨发权 杨程 WU Ruinan;YANG Hua;YANG Faquan;YANG Cheng(School of Mechatronics Engineering and Automation,Foshan University,Foshan 528000,China;Foshan Polytechnic,Foshan 528137,China;Guangdong Shenglu Communication Technology Co.,Ltd.,Foshan 528199,China)
出处 《移动通信》 2024年第4期135-140,共6页 Mobile Communications
基金 国家自然科学基金资助项目(61871129)。
关键词 慢波结构 5G 无源器件 传输线设计 slow-wave structure 5G passive device transmission line design
  • 相关文献

参考文献9

二级参考文献43

  • 1李海鹏,王光明,周成,宗彬锋.加载新型复合左右手传输线单元的宽带单极子天线设计[J].微波学报,2015,31(1):22-25. 被引量:2
  • 2张大勇,冯进军,廖复疆,孔繁敏,蔡军.微带型曲折线慢波结构冷测特性的计算机仿真[J].电子器件,2006,29(4):1223-1226. 被引量:6
  • 3Fu C F, Wei Y Y, Wang W X, et al. Dispersion characteristics of a rectangular helix slow-wave structure [J]. IEEE Trans on Electron Devices, 2008,55(12): 3582-3589.
  • 4Booske J H. New opportunities in vacuum electronics through the application of microfabrication technologies[C]// Proc IEEE Int Vac Electron Conf. 2002: 11-12.
  • 5Sengele S, Jiang H R, Booske J H, et al. Microfabrication and characterization of a selectively metallized W band meander-line TWT circuit [J]. IEEE Trans on Electron Devices, 2009,56(5) : 730-737.
  • 6Zhang D G, Yung E K N, Ding H Y. Dispersion characteristics of a novel shielded periodic meander line[J]. Microwave and Optical Technology Letters, 1996,12(1) : 1-5.
  • 7Shen F, Wei Y Y, Yin H R, et al. A novel V shaped microstrip meander-line slow-wave structure for W band MMPM[J]. IEEE Trans on Plasma Science, 2011.
  • 8Gong Y B, Yin H R, Yue L N, et al. A 140 GHz two beam overmoded folded-waveguide traveling wave tube[J]. IEEE Trans on Plasma Science, 2011,39(3) : 847-851.
  • 9Zhang C, Stevens G C. Dielectric properties of boron nitride filled epoxy composites[C]// Proc IEEE Conf on Electrical Insulation and Dielectric Phenomena. 2006: 19-22.
  • 10冯进军,蔡军,胡银富,瞿波,李含雁,唐烨.折叠波导慢波结构太赫兹真空器件研究[J].中国电子科学研究院学报,2009,4(3):249-254. 被引量:32

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部