期刊文献+

人工智能在股骨头坏死诊疗中的应用与展望 被引量:3

Application and prospect of artificial intelligence in the diagnosis and treatment of femoral head necrosis
下载PDF
导出
摘要 随着人工智能技术的快速发展,越来越多的研究表明人工智能可以在医学领域发挥重要作用。股骨头坏死是一种难治性疾病,传统的治疗方法包括药物治疗、物理疗法和手术治疗,但这些方法均存在一定的局限性。通过应用人工智能技术,可以提高股骨头坏死的诊断准确性、预测精度和治疗效果。医学图像处理与诊断、预测模型与风险评估以及智能辅助手术与治疗决策等方面的应用现状都显示出人工智能在股骨头坏死治疗中的潜力。本文旨在结合人工智能在股骨头坏死诊疗中的应用现状,并探讨展望未来的发展方向。 With the rapid development of artificial intelligence technology,more and more studies show that artificial intelligence can play an important role in the medical field.Femoral head necrosis is a difficult disease to treat.Traditional treatment methods include drug,physical and surgery therapy,but these methods have certain limitations.Through the application of artificial intelligence technology,can improve the diagnostic accuracy,prediction accuracy and treatment effect of femoral head necrosis.The application status of medical image processing and diagnosis,predictive models and risk assessment,and intelligent assisted surgery and treatment decision-making all show the potential of artificial intelligence in the treatment of femoral head necrosis.This article aims to combine the application status of artificial intelligence in the diagnosis and treatment of femoral head necrosis,and discuss the future development direction.
作者 周宇东 马小雨 蔡兴博(综述) 徐永清(审校) ZHOU Yudong;MA Xiaoyu;CAI Xingbo;XU Yongqing(Graduate School of Kunming Medical University,Kunming Yunnan 650500,China;Department of Orthopedics,926th Hospital of the Chinese People’s Liberation Army Joint Logistic Support Force,Kaiyuan Yunnan 661600,China;Department of Orthopedics,920th Hospital of the Chinese People’s Liberation Army Joint Logistic Support Force,Kunming Yunnan 650100,China)
出处 《云南医药》 CAS 2024年第2期70-72,共3页 Medicine and Pharmacy of Yunnan
基金 云南省创伤骨科临床医学中心(ZX20191001) 云南省骨科与运动康复临床医学研究中心(202102AA310068)。
关键词 人工智能 股骨头坏死 深度学习 卷积神经网络 数据共享 artificial intelligence femoral head necrosis deep learning Convolutional Neural Network data sharing
  • 相关文献

参考文献11

二级参考文献96

共引文献48

同被引文献45

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部