期刊文献+

采用光子计数测量的高灵敏度锥束XLCT

High⁃Sensitivity Cone⁃Beam XLCT Using Photon Counting Measurements
原文传递
导出
摘要 X射线激发发光断层成像(XLCT)是一种新兴的混合成像技术,该技术可同时获得目标体结构信息和功能信息。然而,窄束XLCT重建图像虽然具有高空间分辨率,但X射线利用率较低,数据采集时间过长;锥束XLCT系统提高了X射线利用率,缩短了数据采集时间,但有限的探测角度导致图像重建质量相对较低。为解决上述问题,提高X射线利用率,高效实现多角度高灵敏数据采集,提出了一种基于光子计数测量的锥束XLCT系统,并通过仿体实验对其性能进行了验证。仿体实验结果表明,6个角度锥束照射模式下重建图像的相似度系数(DICE)可达50%,系统保真度(SF)和重建浓度误差(RCE)达到0.7以上,可实现3 mg·mL^(-1)以上的荧光物质质量浓度差距的重建。 Objective X-ray luminescence computed tomography(XLCT)technology uses X-ray excitation to stimulate specific luminescent materials at the nanoscale,termed phosphor nanoparticles(PNPs),to produce near-infrared light.Photodetectors then capture the emitted near-infrared light signals from these excited PNPs.Through suitable algorithms,the distribution of PNPs within biological tissues can be visualized.This method allows for structural and functional insights into biological tissues,showing great potential for advancement.There are two main types of XLCT systems:narrow-beam and cone-beam.The narrow-beam XLCT system exhibits higher spatial resolution,albeit at the cost of lower X-ray utilization efficiency.This inefficiency results in extended imaging times,limiting its potential for clinical use.Conversely,the cone-beam XLCT system improves X-ray efficiency and shortens detection time.However,the quality of the reconstructed images tends to be lower due to detection angle limitations.To overcome these challenges,there is a need for an innovative XLCT system that realizes rapid and highly sensitive data collection while also maximizing the use of X-ray technology.By addressing these issues,the clinical limitations of XLCT can be reduced to pave the way for its further development,thereby unlocking a plethora of possibilities.Methods This study introduces a new cone-beam XLCT system based on photon-counting measurements,complemented by an associated reconstruction method.Through the synergistic collaboration between the field-programmable gate array(FPGA)based sub-sampling unit and upper-level control unit,the system realizes automated multi-channel measurements.This integration shortens data acquisition time,boosts experimental efficiency,and mitigates the risks associated with X-ray exposure.After the completion of system implementation,we conduct experimental validation of the system and methodology.Specifically,a fabricated phantom is subjected to multi-angle projection measurements using the established system,and image reconstruction and evaluation are performed using the Tikhonov reconstruction algorithm.Results and Discussions The results of the dual target phantom experiment indicate that under the conditions of a cylindrical phantom radius of 40 mm,target radius of 6 mm,and distance of 14 mm from the dual target phantom(Fig.2),the similarity coefficient(DICE)of the reconstructed image of the dual target phantom exceeds 50%under six-angle cone-beam X-ray irradiation.Furthermore,the system fidelity(SF)exceeds 0.7(Table 1).In the phantom experiment of dual targets with different concentrations,the system proposed in this study effectively distinguishes dual targets with a mass concentration difference of more than 3 mg/mL.The DICE of the reconstruction image maintains over 50%,SF remains over 0.7,and reconstruction concentration error(RCE)is also over 0.7(Table 2).These phantom experiment results confirm the good fidelity and resolution capability of the proposed system.Nevertheless,numerous factors potentially degrade the experimental outcomes,such as the attenuation and scattering of X-ray beams in the XLCT system,the physical and chemical composition of the target body,or even uneven concentration distribution.Additionally,artifacts appear in the reconstructed images.In the future,our research will focus on optimizing algorithms and reducing noise to enhance the application of cone-beam XLCT for in vivo experiments.Conclusions This study comprehensively considers the advantages and disadvantages of two imaging methods in XLCT and proposes a photon-counting-based multi-channel cone-beam XLCT system.The system automation for multi-angle measurements is realized via FPGA and host computer interaction.Specifically,multi-angle cone-beam irradiation reduces data acquisition time,while photon-counting measurement enhances the system sensitivity.Furthermore,a phantom experiment is conducted to validate the effectiveness and practicality of the proposed system and algorithm.The results demonstrate a significant reduction in data acquisition time and an improvement in the utilization of X-rays.
作者 韩景灏 贾梦宇 周仲兴 高峰 Han Jinghao;Jia Mengyu;Zhou Zhongxing;Gao Feng(School of Precision Instruments and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China;Tianjin Key Laboratory of Biomedical Detection Technology and Instrument,Tianjin 300072,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2024年第3期13-19,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(81971656,62175183)。
关键词 医用光学 X射线激发发光断层成像 系统研制 光子计数 仿体实验 medical optics X-ray luminescence computed tomography system design photon counting phantom experiment
  • 相关文献

参考文献8

二级参考文献55

  • 1陈高宇,黄秋.基于融合解析迭代重建网络的高效稀疏投影CT重建算法[J].中国体视学与图像分析,2021,26(2):163-172. 被引量:2
  • 2杜聪聪,乔志伟,张艳娇,芦阳.用于CT稀疏重建的对抗式多残差深度神经网络改进方法[J].中国体视学与图像分析,2021,26(2):145-154. 被引量:1
  • 3江孝国,王远,张开志,郭宝平,石金水,李成刚.高速分幅成像系统中多路图像性能不一致的校正方法研究[J].光学学报,2006,26(4):531-535. 被引量:6
  • 4R. S. Jonnal, J. R. Besecker, J. C. Derbyet al.. Imaging outer segment renewal in living human cone photoreceptors[J]. Opt. Ezpress, 2010, 18(5) : 5257-5270.
  • 5Y. Kitaguchi, T. Fujikado, K. Bessho et al.. Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea [J]. Ophthalmology, 2008, 115 (10): 1771-1777.
  • 6Z. Zhong, B. L. Petrig, X. Qi et al.. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy[J]. Opt. El'press, 2008, 16(17) : 12746-12756.
  • 7J. Liang, B. Grimm, S. Goelzet al.. Objective measurement of wave aberrations of the human eye with the use of a Hartmann- Shack wave-front sensor[J]. J. Opt. Soc. Am. A, 1994, 11(7) 1949-1957.
  • 8J. Liang, D. R. Williams, D. T. Miller. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. J. Opt. Soc. Am. A, 1997, 14(11): 2884-2892.
  • 9A. Roorda, F. Romero-Borja, W. J. Donnelly et al.. Adaptive optics scanning laser ophthalmoscopy[J]. Opt. Express, 2002, 10(9) : 405-412.
  • 10F. C. Delori, K. P. Pflibsen. Spectral reflectance of the human ocular fundus[J]. App. Opt., 1989, 28(6): 1061-1077.

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部